Variabilidad Morfológica y Estructura Poblacional de
Astrocaryum perangustatum F. Kahn & B. Millan
(ARECACEAE) en Pozuzo (Pasco - Perú)

TESIS PARA OPTAR EL GRADO ACADÉMICO DE
MAGÍSTER EN BOTÁNICA TROPICAL
Con mención en
Taxonomía y Sistemática Evolutiva

Bach. Héctor Alonso Aponte Ubilús
LIMA-PERÚ
2012
A todos aquellos que con un abrazo
una mirada,
una palabra,
o una sonrisa,
me dieron fuerzas para seguir adelante.
AGRADECIMIENTOS

Quisiera expresar mi más profundo agradecimiento al Dr. Francis Kahn, asesor de esta tesis, que con sus invaluables sugerencias y recomendaciones ha permitido realizar y mejorar este trabajo de investigación. Asimismo, agradezco a la Dra. Betty Millán, por su confianza y ayuda constante durante el desarrollo de la tesis.

Agradezco al proyecto “Impacto de la extracción de palmeras en Bosques Tropicales” PALMS-FP7 y al Consejo Nacional de Ciencia y Tecnología (CONCYTEC) por su apoyo financiero y logístico para el desarrollo del presente trabajo.

Quedo profundamente agradecido a Susy Castillo, Blanca León, Elluz Huamán, Michael Vega, Yeselia Cano, Eduardo Navarro, Paul Gonzales, Eder Chilquillo, Severo Baldeón, Hamiltón Beltrán, Magda Chanco, Jorge Lingán, Marinoli Rivas, Nanette Vega, Miguel Chocce, Maribel Morales, María Isabel La Torre y Asunción Cano, quienes fueron mis maestros en la taxonomía e identificación de los grupos estudiados durante la caracterización de área de estudio. Agradezco también a Cristina Collazos, Gina Cabanillas, John Flores, Mery Suni y Enoc Jara por su valiosa ayuda en la redacción del manuscrito.

Asimismo, quedo infinitamente agradecido a Percy Müller y a su familia, así como a todas las familias pozuzinas, quienes me brindaron las facilidades para el muestreo y obtención de datos.
CONTENIDO

AGRADECIMIENTOS .. 3
CONTENIDO .. 4
RESUMEN .. 6
ABSTRACT ... 8
INTRODUCCIÓN ... 10
ANTECEDENTES ... 12
 a) La morfología de las plantas y su entorno... 12
 b) La estructura de las poblaciones y comunidades vegetales............................... 13
 c) Las palmeras: Sus poblaciones y morfología en los bosques tropicales..... 14
 d) El género Astrocaryum: Generalidades... 16
 e) La especie en estudio... 18
OBJETIVO GENERAL ... 20
OBJETIVOS ESPECÍFICOS ... 20
HIPÓTESIS .. 21
MATERIAL Y MÉTODOS ... 22
 a) Area de estudio ... 22
 b) Descripción de la especie... 26
 c) Diseño experimental.. 29
 d) Variabilidad morfológica vegetativa de adultos y plántulas................................. 31
 e) Estructura de Poblaciones y Estado fenológico.. 32
 f) Análisis de los datos.. 32
RESULTADOS .. 34
 a) Mediciones morfológicas y observaciones ... 34
 b) Estructura de poblaciones ... 61
DISCUSIÓN .. 63
 a) Variabilidad morfológica vegetativa de Astrocaryum perangustatum........ 63
 b) Estructura de las poblaciones de Astrocaryum perangustatum.............. 65
CONCLUSIONES .. 69
RECOMENDACIONES ... 71
REFERENCIAS BIBLIOGRÁFICAS ... 72
ANEXOS .. 84
RESUMEN

La variabilidad morfológica de los caracteres vegetativos y la estructura de las poblaciones de *Astrocaryum perangustatum* (ARECACEAE) fue evaluada en una población de esta especie, que ocupa las zonas deforestadas (pastizales) y no deforestadas (zonas de bosque) de Pozuzo (Pasco, Perú).

Para estudiar la variabilidad morfológica de las plántulas y los adultos, fueron medidos 105 plántulas (56 en pastizales y 49 en zonas de bosque, en las cuales se evaluó el número de hojas por plántula y largo del limbo y peciolo) y 60 adultos (30 en pastizales y 30 en zonas de bosque a las cuales se les midió el tamaño del tallo, número de frondas y largo de la fronda, peciolo, raquis, ancho y largo de los foliolos y el tamaño de las aguijones) que se encontraron en las parcelas.

A fin de conocer la estructura de las poblaciones, fueron establecidos un total de 50 parcelas de 400m² cada una (25 en pastizales y 25 en zonas boscosas), haciendo un total de 2 hectáreas de evaluación. En cada parcela se registraron la densidad de plántulas, juveniles (I y II) y adultos.

En cuanto a los caracteres morfológicos, se aprecia la gran variabilidad de los caracteres morfológicos vegetativos estudiados en los adultos y plántulas de la población de Pozuzo. La comparación de los parámetros morfológicos obtenidos con las muestras de herbario, nos revela la gran plasticidad morfológica que tiene esta especie en el área de estudio. Las palmeras adultas de las zonas boscosas presentan un mayor promedio en el largo del raquis (607,54 cm), pecíolo y vaina (106,03 cm), largo de las pinnas proximales (109,85 cm) y largo del aguijón mayor (25,84 cm) que aquellas palmeras de los pastizales (con 444,80 cm; 85,70 cm; 85,03 cm y 17,66 cm para el largo del raquis, largo del peciolo y vaina, largo de las pinnas proximales y largo del aguijón mayor en promedio respectivamente). En los pastizales las palmeras adultas tienen en promedio tallo más alto (4,19 m), pinnas medias más anchas (8,66 cm), mayor largo x ancho de las pinas medias (933,63 cm²) y mayor número de frondas (9,96) en comparación con los adultos de los
ambientes boscosos (2,59 m; 6,08 cm; 652,28 cm² y 6,63 para la altura del tallo, ancho de las pinnas medias, largo x ancho de las pinnas medias y número de frondas respectivamente). Las plántulas de las zonas de boscosas tuvieron un mayor largo del limbo (27,08 cm en promedio), peciolo (22,39cm), y un mayor número de hojas (2,95) que las plántulas en los pastizales (17,35cm; 10,12cm y 2,05 para el tamaño de limbo, peciolo y número de hojas promedio respectivamente). Se discute la importancia de la intensidad de luz como uno de los parámetros que afectan la morfología de esta especie.

La estructura de la población de Astrocaryum perangustatum en Pozuzo fue diferente en los bosques y los pastizales. La proporción de adultos fue mayor en las zonas boscosas (29%) en comparación con los pastizales (22%). En promedio hubo una mayor cantidad de adultos en floración en los pastizales (1 por parcela) que en zonas boscosas (0.44 por parcela). Los juveniles fueron ausentes en los pastizales, mientras que en las zonas boscosas representaron el 17%. No se encontraron diferencias significativas a nivel del estadío de plántulas, cuya proporción fue similar en los pastizales (78%) y zonas boscosas (53%). Se discute el posible efecto de las actividades ganaderas y agrícolas sobre las poblaciones de esta especie.

Palabras clave: Astrocaryum, ecología de palmeras, estructura de poblaciones, variabilidad morfológica
ABSTRACT

Morphological variability and population structure of Astrocaryum perangustatum (ARECACEAE) was studied on a population of this species living in pastures and forest areas of Pozuzo (Pasco, Peru).

Sixty adult palms (30 in pastures and 30 in forest areas) were measured to assess the morphological plasticity in vegetative parts (stem length, number and length of the leaf, petiole, rachis, width and length of the leaflets and the spine size).

To assess population structure, it was made a total survey of 2 hectares (50 plots of 400m2, 25 in pastures and 25 in forest areas). In each plot the number of seedlings, juveniles (I and II) and adults was registered.

The population structure was different in forest areas and pastures. The proportions of adults/juveniles1/juveniles2/seedlings were different because of the depletion of adults and juveniles (p. value <0.01). The effect of human activities on population structure of this species is discussed.

The comparison between the morphological characters in the Pozuzo population, and between this population and the herbarium samples, reveals the significant vegetative plasticity of this species in the study area.

The adult palm in the forest areas have a higher average length of the rachis (607.54 cm), petiole and sheath (106.03 cm), length of the proximal pinnae (109.85 cm) and longer spines (25.84 cm) than those palms of pastures (with 444.80 cm, 85.70 cm, 85.03 cm and 17.66 cm for the mean of the length of the rachis, length of the petiole and sheath, length of the proximal pinnae and the length of the spine respectively). In grasslands adult palms have on average higher stem (4.19 m), width of the middle pinnae (8.66 cm), greater length x width of the middles pinnae (933.63 cm2) and higher number of leaves (9.96) compared with those of the forest environments (2.59 m; 6.08 cm; 6.63 cm2 and 652.28 to stem height, width of the
middle pinnae, length x width of the middle pinnae and number of leaves respectively). Seedlings in forest areas had more blade length (27.08 cm on average), petiole length (22.39 cm), and a higher number of leaves (2.95) that seedlings in pasture (17.35 cm, 10.12 and 2.05 cm for the blade length, petiole length and average number of sheets respectively). It is discussed the importance of the light intensity as one of the parameters affecting the morphology of this species.

The structure of the population of *Astrocaryum perangustatum* in Pozuzo was different in the forests areas and pastures. The proportion of adults was higher in forest areas (29%) compared with pastures (22%). Flowering adults were more frequent in pastures (1 per plot) than in forest areas (0.44 per plot). Juveniles were absent in pastures, while in forest areas juveniles 1 and 2 represented the 17% of the population. There were no significant differences at the seedling stage, the proportion was similar in grasslands (78%) and woodland (53%). The possible effects of livestock and agricultural activities on the populations of this species are discussed.

Key words: *Astrocaryum*, palm ecology, population structure, morphological variability
INTRODUCCIÓN

La morfología de las plantas puede variar de acuerdo al hábitat en donde se encuentran, ya que estas se adaptan al espacio en el que viven y a sus condiciones particulares. De esta forma, pueden encontrarse grandes diferencias morfológicas entre individuos de una misma especie separados por grandes distancias y que viven en condiciones diferentes, pero también pueden encontrarse diferencias entre individuos que se separan sólo por algunos metros debido a la plasticidad de los caracteres morfológicos frente a las diferentes condiciones del hábitat a las que son sometidas o inclusive por el estadío de la planta (Schultze et al, 2002; Coleman et al.,2004; Xu et al. 2008). La variabilidad morfológica que puede existir dentro de una misma especie es a veces tal que se generan diferentes fenotipos. En consecuencia muchos investigadores han descrito sub especies, formas y ecotipos, que corresponden a los diferentes fenotipos de la misma especie. Es en este contexto, que el estudio de la variabilidad morfológica se convierte en un tópico de interés ecológico, evolutivo y taxonómico (Hamrick, 1982), ya que permite conocer las respuestas ecológicas de una especie, sus adaptaciones al medio que la rodea y la plasticidad de los caracteres usados en su descripción.

En los bosques tropicales, uno de los grupos más importantes por su abundancia es el grupo de las palmeras (familia Arecaceae). Las palmeras ocupan casi todo hábitat que existe en los bosques tropicales, por lo que se ven expuestas al sinnúmero de condiciones ecológicas que allí existen. Esto último incluye las condiciones generadas por actividades humanas como la deforestación con fines ganaderos y agrícolas. Las observaciones de campo, la descripción de las especies y el análisis de las muestras de herbario nos permiten tener una idea acerca de cómo varían las especies de palmeras. Sin embargo, las descripciones se hacen a partir del muestreo de uno o pocos especímenes, teniendo una idea reducida de la variabilidad morfológica total de cada especie, de cómo estas plantas se adaptan a los cambios en su hábitat, y cuán plásticos son los caracteres morfológicos dentro y entre las poblaciones de palmeras.
Los patrones de distribución, abundancia y estructura de las poblaciones vegetales cambian también de acuerdo a las condiciones de su entorno. En los últimos años, la presión humana sobre los ecosistemas ha cambiado las condiciones a las cuales se ven sometidas. Estos cambios son particulares a cada especie, e inclusive de forma muy independiente de acuerdo al estadío en el que se encuentran (Rockwood, 2006). La estructura y dinámica de las poblaciones de palmeras han sido descritas en diferentes ambientes del Perú, mostrando una gran variabilidad de acuerdo a las condiciones del hábitat. Con fines de conservación, comprender cuál es la estructura de las poblaciones y como ella cambia por las actividades humanas, es de vital importancia.

El presente trabajo aborda los temas de variabilidad morfológica y estructura de las poblaciones utilizando como modelo a una población de *Astrocaryum perangustatum* F. Kahn & B. Millan, una palmera endémica del Perú. La población de esta palmera en el Distrito de Pozuzo (Pasco, Perú) se encuentra distribuida en un mosaico de hábitats compuesto por relictos de bosque y pastizales. Esto la convierte en una población potencial para el estudio de la variabilidad morfológica de las palmeras, así como para el estudio de los posibles impactos de la deforestación en la estructura de sus poblaciones.
ANTECEDENTES

a) La morfología de las plantas y su entorno

Las plantas varían fenotípicamente debido a las condiciones ambientales a las que se ven sometidas. Esta variabilidad resulta de una adaptación gradual de la especie a su ambiente (Hussain & Mahmood, 2004; Mahmood & Abbas, 2003); en ese sentido, aquellas especies vegetales que tienen una amplia distribución geográfica o que ocupan hábitats diversos desarrollan poblaciones adaptadas localmente y muestran variaciones en su expresión morfológica (Elberse et al. 2003; Thompson, 1990; Thompson & Rabinowitz, 1989). Estas variaciones del fenotipo han llevado a muchos investigadores a describir sub especies, formas y ecotipos. Por esta razón, entender como varía morfológicamente una especie y cuál es la plasticidad de sus caracteres es muy importante para lograr definirla como tal (Rhew & Sung-Min, 1991).

Los hábitats en donde viven las especies vegetales son generalmente heterogéneos y dinámicos, esto debido a los cambios en patrones de la química del suelo, disponibilidad del agua, nutrientes, luz y otros factores abióticos (Schmitt, 1993). La variabilidad morfológica de las especies guardará una íntima relación con estos cambios ya que una de las formas de adaptarse a los mismos es mediante la modificación de la forma y tamaño de sus estructuras anatómicas. Por ejemplo, una planta sometida a stress lumínico reduce el tamaño de sus tallos, genera hojas pequeñas y delgadas, disminuye el tiempo de floración (Begon, 2006).

Cuando los seres humanos generamos cambios en el entorno, sometemos a las plantas a nuevas condiciones. Actividades de origen antrópico como la ganadería y la agricultura han impactado fuertemente los ecosistemas donde viven las plantas (INPE 2002, 2006; Salas et al. 2000; Wood et al. 2005; Skole & Tucker, 1993; Lin & Liu, 2006; Pardini et al. 2005), generando condiciones a las cuales las especies vegetales no estaban habituadas (Namashima et al. 2002; Pauli et al. 2003; Pimm & Raven, 2000). Frente a estas nuevas condiciones es posible que
las especies vegetales respondan mediante adaptaciones graduales, o que desaparezcan por incompatibilidad con el hábitat. El estudio de la variabilidad morfológica permite conocer la plasticidad de los caracteres para lograr esta adaptación frente a las nuevas condiciones de stress generadas en los hábitat de las plantas (Shultze, et al. 2002).

El estudio de la variabilidad morfológica de las plantas ha permitido también mejorar el aprovechamiento de algunas plantas útiles para la alimentación y con fines ornamentales, tal y como se ha hecho con algunas especies como *Ruscus hypoglossum* y *Nepeta* spp. (Kremer et al 2009, Smolik et al, 2008)

b) La estructura de las poblaciones y comunidades vegetales

La estructura y abundancia poblacional de las especies vegetales se encuentran también relacionadas a las condiciones de hábitat que ocupan. Si una especie vegetal ocupa hábitats diferentes, su estructura y dinámica poblacional será particular a cada lugar. Asimismo, de haber actividades que alteren condiciones de los ecosistemas donde viven las plantas, las poblaciones se ven afectadas teniendo como consecuencia nuevos patrones de distribución y de densidad poblacional. Estos cambios a nivel poblacional ocurren de forma particular en cada especie, e inclusive de forma muy independiente de acuerdo al estadío fenológico en el que se encuentran las plantas (Rockwood, 2006). Cuando hay perturbaciones en el entorno muchas especies pueden ser menos abundantes, mientras que otras aprovecharán estas nuevas condiciones aumentando su población de forma considerable. Un ejemplo de ello son las especies de malezas y plantas exóticas introducidas a ambientes naturales por actividades de ganadería. Estas se vuelven abundantes en ambientes perturbados pudiendo causar el desplazamiento de las especies nativas y hasta su extinción (Wagner et al, 1990).

Los cambios a nivel de las poblaciones de plantas traen consecuencias a nivel de la estructura de las comunidades vegetales. Comprender los cambios en la
estructura poblacional y comunitaria de los bosques impactados será muy importante en los próximos años ya que de esta forma se podrá conocer el potencial de estos hábitat modificados para alojar la diversidad de especies y sus poblaciones (Gardner et al. 2007; Nakagawa et al. 2006; Schultze et al; 2004 Tabanez & Viana, 2000).

c) Las palmeras: Sus poblaciones y morfología en los bosques tropicales

Las palmeras (familia Arecaceae) son un grupo muy importante a nivel estructural en los bosques tropicales (Corner 1966, Uhl & Dransfield 1986, Kahn & Granville 1992; Vormisto et al. 2004; Balslev et al. 2010). Esta familia posee un gran número de especies (entre 2200 y 3000 especies) muchas de las cuales corresponde a especies económicamente importantes por su uso en construcción y fabricación de artesanías (Judd et al. 1999; Albán, 2008). La explotación de las palmeras con estos fines, así como la deforestación de sus poblaciones en la Amazonía para el uso de tierra, ha cambiado fuertemente la estructura poblacional de las palmeras y de las comunidades a las que pertenecen. Por ejemplo algunas especies, como *Attalea geraensis*, han reducido su área de dispersión, debido a la desaparición de los animales dispersores (Almeida & Galletti, 2007; Wrigth et al. 2000). La reducción de la densidad poblacional por la reducción del tamaño del bosque o por efectos de borde, ha sido reportada para varias especies del género *Astrocaryum*, como *Hexopetion mexicanum* y *Astrocaryum acaule* (Rodríguez et al. 2007; Scariot, 1999). Asimismo, variaciones en la fenología han sido reportadas en especies como *Attalea humilis*, debido a la reducción de su área de distribución y las quemaduras constantes a las que se ve expuesto (Souza et al. 2000).

Así como estas especies de palmera disminuyen en densidad, otras se vuelven más abundantes, dominantes, o inclusive invasoras aprovechando la radiación solar y la falta de competencia en las zonas deforestadas (Sist and Puig, 1987; De Steven, 1986; Scariot et al. 1989; Anderson et al. 1999). Tal es el caso de algunas especies del género *Attalea* (como por ejemplo *Attalea speciosa*) y *Astrocaryum*...
(Mitja & Farraz, 2001; Pintaud, 1999). La conversión de zonas boscosas a pastizales puede generar efectos positivos en las poblaciones de palmeras, mediante relaciones de facilitación (nursering) tal y como se ha discutido para poblaciones de *Ceroxylon echinulatum* (Anthelme et al. 2011).

Las palmeras ocupan todos los espacios de los bosques tropicales, que incluyen las copas de los árboles y el sotobosque, zonas inundadas y semi desérticas, savanas y densos bosques de neblina. La variabilidad de las formas de vida en los bosques tropicales ha sido estudiado por de Granville (1992). Sus estudios en las palmeras de la Guyana Francesa muestran la gran variedad de formas de vida y como estas se presentan en zonas deforestadas y zonas boscosas. Asimismo hace un análisis de la forma de las hojas de las palmeras con respecto al hábitat donde se encuentran. Indica por ejemplo que las palmeras que poseen frondas de la corona expuestas a gran cantidad de radiación solar poseen pinnas más delgadas (caso reportado para especies del género *Euterpe* y algunos casos puntuales como para *Bactris major*, *Mauritia flexuosa*, *Maximilania maripa* y *Astrocaryum vulgare*). Esta variación en su morfología parece ser una adaptación a la excesiva cantidad de luz, evitando de esta forma perder agua por evapotranspiración. Por el contrario, las palmeras que se encuentran en zonas con sombra como el sotobosque presentan foliolos amplios y sigmoideos (por ejemplo en *Bactris constanciae*, *B. gastoniana*, *B. humilis* y *B. maraja*) o, en otros casos, las pinnas son angostas, pero ubicadas en un plano horizontal, de tal forma que pueden captar mejor la débil radiación de sotobosque (reportado por ejemplo para *Astrocaryum paramaca*, *Bactris rhaphidacantha* y *Geonoma máxima*). Indica también que las especies pequeñas de los bosques tienen una productividad foliar baja, teniendo como consecuencia un crecimiento lento hasta alcanzar la copa de los árboles. Es así que se distinguen tres estadíos en el crecimiento de las palmeras, muy relacionados con la luz: a) el estadío de establecimiento (donde se requiere un incremento gradual de la luz, y se encuentra relacionado al engrosamiento del meristemo y aumento progresivo del área foliar), b) estadío homeostático (donde prácticamente la palmera no engrosa ni aumenta su área foliar y que termina cuando se dan condiciones de gran luminosidad) y c) estadío
de crecimiento del tallo (desencadenado por la disponibilidad de luz e implica el alargamiento del tallo) (Granville, 1978). En las palmeras que se encuentran en áreas abiertas el estadío homeostático es muy corto o no ocurre, por lo que las palmeras crecen a progresivamente hasta alcanzar su tamaño máximo.

d) El género Astrocaryum: Generalidades

Uno de los géneros más diverso de las Arecales es el género Astrocaryum, el cuál ocupa el tercer lugar por su diversidad en los trópicos húmedos de Sudamérica después de Geonoma y Bactris (Kahn, 2008). Este género está compuesto por 40 especies y se encuentra distribuido en 12 países de Sud América, siendo Brasil el país con mayor diversidad de especies de este género (26 especies de las cuales 8 son endémicas). Comprende tres subgéneros: Munbaca, Astrocaryum y Pleiogynanthus. En el Perú se encuentra bien representado con 14 especies, de las cuales 4 son endémicas. El género Astrocaryum presenta una amplia variabilidad de formas biológicas en sus especies las cuales pueden ser multicaules o monocaules, pueden o no presentar tallos subterráneos, y pueden ser plantas pequeñas de sotobosque, hasta grandes palmeras que alcanzan la copa de los demás árboles (Kahn & Granville, 1992; Balslev et al. 2011).

Las especies del género Astrocaryum componen múltiples hábitats de nuestra Amazonía, encontrándose en bosques de terra firme, zonas inundadas, terrazas fluviales e inclusive formando savannas. Muchas especies tienen una distribución restringida ubicándose únicamente en valles del este de los Andes y generalmente a menos de 1000 metros sobre el nivel del mar (con excepciones como el caso de Astrocaryum faranae que ha sido reportada hasta los 1650 m). La diversidad de hábitats que ocupan y la distribución restringida de sus especies hace que sus poblaciones estén propensas a verse afectadas por actividades agropecuarias.

Diferentes investigadores han trabajado en el género Astrocaryum, pudiendo contar ahora con conocimientos básicos acerca de muchas de sus especies (Kahn & Millán, 1992; Sist, 1989b; Balslev et al. 2008). Por ejemplo se conoce la densidad poblacional de especies como Astrocaryum chonta, Astrocaryum...
carnosum (Kahn & Mejía, 1990), Astrocaryum javarense (Kahn & Mejía, 1991) y Astrocaryum sciophilum (Sist, 1989a) que son especies de bosques de terra firme y zonas parcialmente inundadas. De estas especies se reportan densidades muy variables que van desde los 88 adultos y 57 plántulas (para Astrocaryum carnosum) hasta 6 adultos y 13,2 plántulas (para Astrocaryum javarense) en parcelas de 0,1Ha. Otras especies como Astrocaryum sciophilum (especie del sotobosque en la Guyana Francesa) presentó densidades promedio de 35 individuos adultos (en 8 hectáreas) y 241 juveniles (en un espacio de 2 hectáreas) (Charles-Dominique et al. 2001).

Las plantas de este género se caracterizan por presentar una gran cantidad de usos. A nivel etnobotánico, se reportan usos para los frutos, hojas, tallos, raíces y la savia de diferentes especies del género (Kahn, 2008). Para el Perú se reporta el uso de 12 especies del género, siendo principalmente utilizado con fines alimenticios y de construcción (Albán et al. 2008).

En lo que corresponde a su distribución geográfica la mayoría de especies ocupa la llanura amazónica, sin embargo hay especies como aquellas de la subsección Acaulia (por ejemplo Astrocaryum arenarium y Astrocaryum campestre) que ocupan las regiones semi áridas del cerrado del Brasil (Kahn, 2008).

También hay estudios que permiten conocer las interacciones de las especies de Astrocaryum con especies animales. Se conoce por ejemplo que especies del sotobosque, como Astrocaryum sciophilum, reportan poca herbivoría, resiste bien a condiciones de sequía, gracias al tallo subterráneo que posee es capaz de resistir eventos como la caída de los árboles, poseen una dispersión netamente ligada a roedores (entre ellas especies de los géneros Dasyprocta, Myprocta, Sciurus y Proechimys). Esta especie presentaba producción de hojas muy lento (1 hoja nueva cada 16 meses) lo que indica un ciclo de vida bastante largo (Charles Dominique et al, 2001).
Del lado taxonómico, se ha hecho la revisión reciente de las especies del género, proporcionando una clave dicotómica y caracteres particulares de forma para cada especie (Kahn, 2008).

e) **La especie en estudio**

El hábitat de esta especie comprende un mosaico de zonas deforestadas y relictos de bosque que recubre el bosque premontano. En estos ecosistemas ocupa el sotobosque de las zonas boscosas, siendo un árbol que tiene un tamaño promedio de 6 metros de altura. Es una especie resistente a la deforestación, pudiendo observarla en campos agrícolas y ganaderos. La razón por la cual subsiste en este tipo de ambientes es porque su madera es muy dura y los pobladores evitan cortarla a fin de no malograr sus herramientas. Algunos pobladores afirman que la presencia de esta especie es un indicador de la buena calidad de la tierra, siendo esta otra razón por la cual evitan la tala de los individuos adultos. La distribución agrupada de esta especie en las zonas agropecuarias indica que, probablemente, ocupó grandes extensiones las cuales han sido reducidas por la deforestación (F. Kahn, ined.) desconociéndose los posibles efectos de la deforestación sobre su densidad poblacional, y su morfología. Tampoco se conoce si los cambios en la composición de la comunidad de plantas, como consecuencia de la deforestación, han traído consigo la presencia de especies invasoras, quienes pueden estar amenazando las poblaciones de esta especie de palmera.

Esta especie es conocida por los pobladores como “huicungo”, “chonta” y “masanke”. Acerca de los usos que se le ha dado a esta especie se conoce
principalmente de aquellos que les ha dado la cultura Ashaninka. Ellos utilizan los frutos y flores para su alimentación; obtienen de su corteza el suri y utilizan el tronco como poste para construcción; las frondas son utilizadas para el techado y la fabricación de abanicos, sopladores y esteras; las semillas son utilizadas también para hacer artesanías; los aguijones son utilizados para fabricar flechas y agujas; las fibras del raquis se utilizan para hacer escobas y las raíces son utilizadas para hacer un extracto contra la hepatitis (Sosnowska et al. 2010).
OBJETIVO GENERAL

- Estudiar la variabilidad morfológica y la estructura de una población de *Astrocaryum perangustatum* en el departamento de Pozuzo (Pasco - Perú).

OBJETIVOS ESPECÍFICOS

- Analizar la variabilidad morfológica vegetativa en los estadíos adulto y plántula de *Astrocaryum perangustatum* en Pozuzo.

- Estudiar la estructura de poblaciones de *Astrocaryum perangustatum* en Pozuzo y como esta varía en los pastizales y zonas boscosas del área de estudio.
HIPÓTESIS

- La especie en estudio presenta una gran plasticidad morfológica, encontrándose diferencias morfológicas vegetativas entre los individuos de las zonas boscosas y los pastizales.

- La estructura de poblaciones de *Astrocaryum perangustatum* se ve afectada en los pastizales, apreciándose estos efectos en la disminución de la abundancia de algunos estadíos de esta especie.
MATERIAL Y MÉTODOS

a) Área de estudio

El Distrito de Pozuzo es parte de la provincia de Oxapampa en el departamento de Pasco, Perú (Fig. 1 y 2). Esta ciudad fue fundada en 1859, producto de la migración de austriacos y alemanes al interior de la selva peruana. Pozuzo se divide en dos pueblos principales: Pozuzo y Prusia, colonizado por austriacos y alemanes respectivamente. Los pobladores de esta zona han tenido como actividades principales la ganadería y la producción de lácteos y sus derivados. Para el establecimiento de sus ganados debieron empezar con la deforestación de grandes áreas de bosque.

La altitud media del área de estudio es de 800 m, llegando a los 1200 m en algunas zonas. La temperatura media anual es de 22,5°C (CAAL, 2009). Los meses más cálidos son Septiembre y Octubre, donde la temperatura media es de 28,9°C. La precipitación anual es de 2300 mm, siendo Enero y Febrero los meses de mayor precipitación. Su ubicación dentro del Valle le da un clima muy particular, con dos estaciones bien marcadas: una estación seca, entre los meses de Mayo y Octubre, y una estación húmeda con precipitaciones, entre los meses de Noviembre y Abril (Mena, 2010).

La población evaluada de Astrocaryum perangustatum se encuentra en zonas de bosque y pastizales en los alrededores del pueblo de Pozuzo y en las cercanías del Caserío Santa Rosa de Pozuzo (figura 2).

Generalmente, las áreas boscosas se encuentran en zonas de difícil acceso debido a que son muy empinadas, muchos de ellos son relictos de bosque primario, mientras que otros son bosques secundarios. El área de estas zonas boscosas varía entre 1 y 23 Ha. Los pastizales estudiados corresponden a áreas de uso ganadero, que en su mayoría fueron deforestadas hace más de 20 años.
La parcela 4 fue deforestada hace 150 años, y las parcelas 5 y 6 hace 50 años aproximadamente. El área de estos pastizales varía entre 2 y 25 Ha.

Figura 1. Ubicación del área estudiada en el Departamento de Pasco. Coordenadas en UTM. Mayor detalle en el Anexo 1.
Figura 2. Área de estudio. Vista característica del área de estudio (arriba). Detalle de zona boscosa (abajo izquierda) y pastizal (abajo derecha), hábitat ocupados por *Astrocaryum perangustatum* en Pozuzo
La radiación en las parcelas evaluadas es variable. Para las parcelas de bosque se reportan medidas entre 530 (en sotobosque) hasta 140000 Lux (cuando hay un rayo de luz), mientras que para los pastizales se reportan medidas variables entre 4000 Lux (día nublado) y 153900 Lux (día soleado) (Aponte, datos no publicados).

Trabajos paralelos permitieron conocer las especies vegetales que caracterizan el del hábitat de *Astrocaryum perangustatum* en Pozuzo (Aponte et al. 2010; 2011). Las zonas boscosas se encuentran caracterizadas por especies de las familias Polypodiaceae, Aspleniacea, Araceae y Cyclanthaceae. *Cardulovica palmata* (*Cyclanthaceae*) y *Anthurium croatii* (*Araceae*) fueron muy frecuentes en las zonas boscosas (en más del 50% de las parcelas). En los pastizales Thelypteridaceae, Lygodiaceae, Anemiacceae, Melastomataceae, Malvaceae, Verbenaceae y Lythracea fueron las más abundantes. *Tibouchina longifolia*, *Stachytarpeta sp.* y *Sida rhombifolia* se encontraron en el 50% de parcelas realizadas en pastizales.

Otras especies frecuentes en los pastizales evaluados fueron *Elephantopus mollis* (Asteraceae), *Blechnum occidentale* (Blechnaceae), *Cyperus chalaranthus* (Cyperaceae); *Rinchospora brebiuscula* (Cyperaceae); *Hyptis mutabilis* (Lamiaceae); *Cuphea carthagenensis* (Lythraceae); *Adenaria floribunda* (Lythraceae); *Urochloa aff. fusca* (Poaceae), *Miconia sanguínea* (Melastomataceae) y *Miconia longifolia* (Melastomataceae).

Tanto en los pastizales y en las zonas boscosas fueron observadas especies de malezas, especies de plantas introducidas y especies invasoras. Por ejemplo, dentro de los helechos observados tenemos a *Thelypteris opulenta* (helecho introducido, según B. León), *Pteridium caudatum*, *Nephrolepis cordifolia* y *Macrothelipteris torresiana* (estas tres últimas consideradas especies con alto potencial invasivo, Robinson et al. 2010 y Roos et al. 2010). Dentro de las plantas con flores observadas están *Psidium guajaba*, *Pseudelephantophus spiralis* (ambas malezas consideradas especies con potencial invasivo medio por Ochoa y Andrade 2003) y *Pennisetum purpureum* (catalogada como especie invasora cuyo impacto es la alteración de hábitats, Ziller, et al. 2005), *Ageratum conizoides,*
Apium graveolens, Asclepias curassavica, Chamaesyce hirta, Conyza bonariensis, Cyperus luzulae, Desmodium ascendens, Desmodium axilare, Erechtites hieracifolia, Iresine diffusa, Paspalum virgatum y Sida rhombifolia (estas últimas consideradas como malezas, Sagastegui & Leiva, 1993).

b) Descripción de la especie

Astrocaryum perangustatum F. Kahn & B. Millan es una palmera monocaule. El tallo llega hasta los 4 m de alto, con 20–23 cm de diámetro, inerme con cicatrices foliares prominentes, vainas de las frondas muertas persistentes en la parte distal de tallo. Frondas 8–14, vaina y pecíolo verdes, con setas de color negro, 117–190 cm de largo; vaina fibrosa en las márgenes, densamente armada con aguijones aplanados, 4–6 cm de largo, levemente flexuosos, con un tomento flocoso pardo, y otros hasta 40 cm de largo en la cara abaxial, pecíolo corto, con aguijones en los lados laterales; raquis hasta 450 cm de largo, con setas negras y aguijones aplanados hasta 4 cm de largo, usualmente en grupos de 2–3; pinnas 92–110, regularmente dispuestas en un mismo plano, cara abaxial satinada; pinna proximal 88–91 cm de largo, 1,5–4 cm de ancho; pinna medial 117–132 cm de largo, 9–11 cm de ancho; pinna distal 34–41 cm de largo, 2,5–5 cm de ancho. Inflorescencia erguida; prófilo 66–87 cm de largo, 24–26 cm de ancho, cara a abaxial aplanada, cara adaxial convexa; bráctea peduncular 116–127 cm de largo, 36 cm de ancho abierta, insertada a 52–54 cm de la base del raquis, cara abaxial con un indumento pardo a marrón, o amarillento sin indumento, con pocas setas y algunos aguijones aplanados, flexuosos, cubiertos de un tomento flocoso blanquecino, 1 cm de largo en la parte distal; pedúnculo 120 cm de largo, sección 5,1–5,5 cm x 4,4–4,5 cm en la parte distal, 9,2–12,2 cm x 7,1–9 cm en la parte proximal, con aguijones pequeños, flexuosos, cubiertos de un tomento flocoso blanquecino, 0,5 cm de largo en la parte distal; raquis 57–61 cm de largo; raquillas numerosas, parte proximal 0,3–5 cm de largo, glabra, parte distal con las flores estaminadas 8–11 cm de largo, con pelos hialinos, claviformes, una sola flor
pistilada insertada en la base a 1 cm del raquis. Flor estaminada con 3 pétalos soldados en la base, 1,1 ± 0,2 mm de largo, pétalos 3, 5 ± 0,3 mm de largo; estambres 6; anteras 1,5 ± 0,1 mm de largo; filamento 1,7 ± 0,2 mm de largo; pistilodio pequeño, tripartido. Flor pistilada con cáliz urceolado levemente doblado horizontalmente en la parte distal, 9,2 ± 0,5 a 11,4 ± 0,7 mm de largo, glabro a glabrado con setas o con pequeños aguijones cayendo después de la antesis, tridentado; corola 8,3 ± 0,5 a 10,9 ± 0,8 mm de largo, urceolada, con setas aplanadas, flexuosas, amarillentas, 1–2 mm de largo, tridenticulada, margen del limbo ciliado; anillo estaminodial entero, 4 mm de largo, 6-denticulado, o laciniado 3–9,5 mm de largo, rígido, con margen aculeolado; pistilo tomentoso, blanquecino, con aguijones 1-1,5 mm de largo; estigmas 3, 4-5 mm de largo. Fruto turbinado a elipsoidal, levemente asimétrico, estrechándose en la parte proximal, ésta levemente curvada, 2,5–2,6 cm de diámetro en la parte distal, 7,1–8,7 cm de largo incluyendo el rostro 0,5–1 cm de largo, pedicelo 0,5–2 cm de largo; epicarpo con aguijones de color marrón a negro, brillantes, 4 mm de largo; mesocarpo carnoso, 2–3 mm de espesor; endocarpo redondo en la parte distal, detenidamente agudo en la parte distal; perianto con corola irregularmente dentada, 19–24 mm de largo, con pocas setas; anillo estaminodial crenulado, 14–16 mm de largo; cáliz glabro, 3–5 lobado, 9–13 mm de largo.

La descripción de la especie se hizo a partir de observación en el campo (San Juan de Calcazu) y de tres muestras: Smith 4045; Kahn, 3231, 3232.

Astrocaryum perangustatum pertenece al subgénero Monogynanthus, sección Huicungo, subsección Sachacungo, en la que se encuentran Astrocaryum cuatrecasanum de Colombia, y tres especies que crecen en Perú y países limítrofes (Astrocaryum gratum, A. macrocalyx y A. urostachys) (Kahn, 2008).

Figura 3. Mapa de distribución de *Astrocaryum perangustatum* según las localidades en donde ha sido reportada la especie (según Kahn et al. 2011). En rojo se señala el departamento de Pozuzo, zona en donde se realizó el estudio.
c) Diseño experimental

Durante agosto y noviembre del 2009, fueron instaladas un total de 50 parcelas de 400m2 (20m x 20m, 25 en pastizales y 25 en zonas de bosque, haciendo un total de 2 hectáreas). Las parcelas fueron ubicadas en zonas boscosas y pastizales donde se encontraba *Astrocaryum perangustatum* (Figura 1, Anexo 1). Algunas parcelas fueron ubicadas en el centro de los pastizales o relictos de bosque, mientras que otras se ubicaron en zonas fronterizas. Las parcelas tuvieron como centro a una palmera adulta (de haber varias palmeras adultas, la de mayor altura fue la del centro). Trabajos previos en otras palmeras han usado un área similar de parcela (Kahn & Castro, 1985; Velarde & Moraes 2008; Arango et al 2010; Anthelme et al. 2011). El uso de parcelas de 400m2 permite tomar una muestra representativa de las poblaciones incluyendo los diferentes estadíos en aquellos parches de bosques de corta extensión (Anthelme et al. 2010). Este tamaño de parcela hace además el trabajo más sencillo a nivel de las zonas con mucha pendiente (mayor a 45°) donde el acceso es muy difícil.

Las palmeras fueron separadas en cuatro estadíos vegetativos de esta especie, de acuerdo al porte, tamaño y morfología foliar: a) plántulas, que se caracterizan por ser individuos acaules y poseen hojas bífidas; b) juvenil 1, que son palmeras acaules con el limbo irregularmente divido en algunas pinnas en su parte proximal y medial, y la parte distal del limbo bífida y con pinnas bífidas en hojas de 1m a 2m de longitud; c) juvenil 2, que corresponden a individuos acaules, con el limbo totalmente dividido en pinnas, de frondas entre 2m y 4m, y d) adultos, con tallo conspicuo, con el limbo de las frondas regularmente dividido en pinnas dispuestas en un solo plano, con presencia de flores e inflorescencias, y cuyas frondas son generalmente mayores a los 4m (Figura 4). Estas clases también tienen diferentes grados de sensibilidad a la desecación (régimen hídrico modificado, fuegos, ganados, entre otros).
Figura 4. Tres de los cuatro estadios de *Astrocaryum perangustatum*. Se muestran los estadios de plántulas (a), juvenil1 (b) y adulto (c)
La variabilidad morfológica foliar y de tamaño en plantas adultas fue evaluado entre agosto del 2009 y junio del 2011. Se consideró el muestreo siguiente: 60 adultos, 30 en zonas de bosque y 30 en pastizales. Las variables evaluadas fueron: a) altura del tallo y el tamaño total de la planta (considerando la altitud de la planta como la medida desde el suelo hasta la mitad de la fronda más erguida); b) el número de frondas y pinas c) largo total de la fronda, peciolo y raquis de la fronda más externa de la corona; d) de esta misma fronda se midieron el ancho y largo de las pinas tomando los datos de 3 a 6 pinas proximales, medias y distales respectivamente, luego este valor fue multiplicado para conocer el largo x ancho de los tres tipos de pinas. Cada vez que la palmera no haya sufrido daño por quema, fueron medidos el tamaño de los aguijones mayores que se encuentran en los pecíolos de las frondas, para lo cual se midieron de 2 a 4 aguijones cuando fue posible. Para cada parámetro evaluado se obtuvo el promedio por individuo, teniendo un total de 60 promedios para cada parámetro (a excepción de los aguijones mayores de las cuales se tiene sólo 57 promedios por no haber sido medidos en 3 plantas quemadas). Finalmente, a fin de comparar la variabilidad morfológica de los adultos con muestras de herbario, fue realizada una comparación morfológica entre los datos obtenidos en Pozuzo y 13 vouchers de la especie pertenecientes a toda su área de distribución (Vouchers USM: B. Millán and F. Kahn 1592, 1597, 1696, F. Kahn 3231-32, 4436, 4437-39, 4445, 4450, 4501-02).

Al mismo tiempo se evaluó la variabilidad morfológica de las plántulas (105 plántulas, 56 en pastizales y 49 en zonas de bosque, que corresponden a aquellas que se encontraban en las parcelas) de las cuales se midió el número de hojas por plántula y, en la hoja más grande, el largo del limbo y del peciolo.

Los estadíos juveniles no fueron caracterizados morfológicamente ya que fueron muy escasos en el área de estudio. Tanto los adultos como las plántulas
evaluadas se encontraron dentro de las parcelas definidas en el diseño experimental.

e) Estructura de Poblaciones y Estado fenológico

En cada una de las 50 parcelas instaladas fue registrado el número total individuos, incluyendo plántulas, juveniles I y II, y adultos. Asimismo se anotó en los adultos la presencia o signos de haber tenido inflorescencia o infrutescencia.

f) Análisis de los datos

Se realizaron análisis estadísticos descriptivos y de medias a fin de determinar si las diferencias de la morfología y estructura poblacional de las zonas boscosas y las zonas deforestadas fue significativa.

En los análisis descriptivos se buscó la media, la desviación estándar y los valores máximos y mínimos para cada variable. Se construyeron gráficos con los promedios. Se hicieron gráficos de los promedios de cada parámetro de los adultos y plántulas. A fin de apreciar la variabilidad de los datos morfológicos se procedió a construir histogramas de frecuencias de la variabilidad de un parámetro morfológico en la población, y en las zonas boscosas y pastizales por separado. A fin de darle más resolución a cada histograma se eligieron 10 rangos para todos los gráficos. A cada histograma se le sobrepuso una curva normal.

Para la variabilidad morfológica se calculó el porcentaje de variabilidad inferior (%I) y el procentaje de variabilidad superior (%S) siguiendo la siguiente fórmula:

\[
%I = \frac{(Min - p) \times 100}{p} \quad \%S = \frac{(Max - p) \times 100}{p}
\]

Donde p es el promedio, Min es el valor mínimo y Max es el valor máximo de cada carácter morfológico evaluado.
Antes de hacer la comparación de medias se analizó si los datos seguían una distribución normal. Para comprobarlo se realizó el test de Shapiro-Wilk. En este test se asume la hipótesis Ho en la que la distribución es normal. Se rechaza la hipótesis Ho cuando la distribución no es normal, con una probabilidad menor al 5% (p<0.05). Una vez realizado el análisis pudo observarse que algunos grupos de datos no cumplían con la normalidad (Resultados en Anexo 2).

La aleatoriedad del muestreo no fue verificada, ya que el muestreo de campo por su naturaleza no ha sido realizado contemplando la aleatoriedad en la toma de muestras (las parcelas fueron colocadas justamente donde estaban las poblaciones).

Algunos grupos de datos (por ejemplo, los datos poblacionales) tienen en un número menor de 30 lo que no permite realizar un análisis ANOVA por ser un número pequeño de datos.

Frente a estas circunstancias se recomienda utilizar un test no paramétrico de comparación de medias. El Test de Kruskal-Wallis (KWT). Este análisis no paramétrico permite la comparación de datos que no corresponden a un muestreo aleatorio, y se ajusta a distribuciones normales y no normales, lo cual encaja perfectamente con el tipo de muestreo y las características de los datos en el presente estudio (Crowley, 1992).

De forma complementaria, se hizo el análisis de varianza (ANOVA) a fin de contrastar los resultados de significancia. El análisis ANOVA permite conocer si existen diferencias significativas entre dos conjuntos de datos que se ajusten a una distribución normal, caso que se da generalmente cuando se hace un muestreo mínimo de 30 datos (tal y como se ha realizado para el presente estudio para todas las variables morfológicas).

Todos los análisis y gráficos fueron realizados en el programa PAST (Hammer et al. 2008) a excepción de los gráficos de promedios que fueron hechos en Excel® 2007 (Microsoft, con licencia).
RESULTADOS

\textit{a) Mediciones morfológicas y observaciones}

Fue encontrada una gran plasticidad en los caracteres vegetativos de la población (figuras 5 a la 18, parte a). En su mayoría los caracteres varían alrededor del 50% con respecto a la media. Algunos caracteres (longitud del tallo, número de frondas y ancho de las pinna proximales, largo x ancho de pinnas medias y distales) tuvieron un porcentaje de variabilidad superior o inferior alrededor del 100% (Tabla 1). Los datos morfológicos completos por palmera se encuentran en el Anexo 3 y 4.

En la comparación entre las plantas del pastizal y de las zonas boscosas se encontraron diferencias para algunos caracteres vegetativos (Figuras 5 a la 22, Tabla 2). Las palmeras en los pastizales presentaron mayor tamaño del tallo (4,19 m en promedio); mayor número de frondas (9,96 frondas por palmera en promedio) y mayor valor de largo x Ancho de las pinnas medias (933,63 cm²). Las palmeras en zonas de bosque presentaron valores promedio más bajos estos parámetros (2,59m para el tamaño de los tallos, 652,28 cm², 6,63 frondas). Las plantas adultas evaluadas en áreas de bosque presentaron un mayor largo de las fronda (708,03cm), peciolo (106,03cm), raquis (607,54 cm), largo y ancho de las pinnas proximales (109,85cm y 3,74 cm respectivamente) y mediales (106,16 cm y 6,08 cm para el largo y ancho respectivamente) en comparación con las palmeras medidas en los pastizales. Todas las diferencias mencionadas son significativas (p. value <0,01 para ANOVA y KWT; Tabla 2, Anexo 5 y 6). No se encontraron diferencias significativas en los parámetros de tamaño total y largo de las pinnas medias y apicales, largo x ancho de las pinnas distales y proximales entre las plantas de ambas zonas. En el caso de los aguijones mayores mostraron ser de mayor tamaño en las zonas de bosque (25,84 cm) que en las zonas abiertas (17,66 cm). El porcentaje de variabilidad alrededor del promedio similar entre las
algunos caracteres tuvieron una variación mayor al 100% en las palmeras de zonas boscosas (Altura del tallo y número de frondas) y de los pastizales (Ancho de las pinnas proximales y largo del aguijón mayor).

Tabla 1. Variables morfológicas de las palmeras adultas de *Astrocaryum perangustatum*. N=número de datos; P=promedio; DS=Desviación estándar; min= mínimo; max= máximo; %I=Porcentaje de variabilidad inferior; %S=Porcentaje de variabilidad superior.

<table>
<thead>
<tr>
<th>Variable descriptiva</th>
<th>N</th>
<th>P +/- DS (min - max)</th>
<th>%I</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura de la palmera (m)</td>
<td>60</td>
<td>7,48 +/- 1,62 (4,2 – 11)</td>
<td>-43.84</td>
<td>47.08</td>
</tr>
<tr>
<td>Altura del tallo (m)</td>
<td>60</td>
<td>3,4 +/- 1,82 (0,2 – 7,2)</td>
<td>-94.11</td>
<td>111.88</td>
</tr>
<tr>
<td>Número de frondas en la corona</td>
<td>60</td>
<td>8,3 +/- 3,2 (3 – 16)</td>
<td>-63.86</td>
<td>92.77</td>
</tr>
<tr>
<td>Número de pinnas por lado</td>
<td>59</td>
<td>105.0 +/- 7.86 (86 – 120)</td>
<td>-17.88</td>
<td>14.59</td>
</tr>
<tr>
<td>Largo de la fronda mas externa (cm)</td>
<td>60</td>
<td>619.0 +/- 139.0 (367 – 943)</td>
<td>-40.75</td>
<td>52.24</td>
</tr>
<tr>
<td>Largo del pecíolo y vaina (cm)</td>
<td>60</td>
<td>95.9 +/- 32.3 (50 – 163)</td>
<td>-47.84</td>
<td>70.03</td>
</tr>
<tr>
<td>Largo del Raquis (cm)</td>
<td>60</td>
<td>526 +/- 126.0 (310 – 780)</td>
<td>-41.08</td>
<td>48.24</td>
</tr>
<tr>
<td>Largo de las pinnas proximales (cm)</td>
<td>60</td>
<td>96.3 +/- 25 (44.5 – 155)</td>
<td>-53.8</td>
<td>60.73</td>
</tr>
<tr>
<td>Ancho de las pinnas proximales (cm)</td>
<td>60</td>
<td>4,23 +/- 1,42 (1 – 8.5)</td>
<td>-76.35</td>
<td>101.01</td>
</tr>
<tr>
<td>Largo x ancho Pinhas Proximales (cm²)</td>
<td>60</td>
<td>423.39 +/- 223.30 (55 – 1201)</td>
<td>-86.99</td>
<td>183.92</td>
</tr>
<tr>
<td>Largo de las pinnas medias(cm)</td>
<td>60</td>
<td>106.0 +/- 15.6 (68.6 – 138)</td>
<td>-35.18</td>
<td>30.07</td>
</tr>
<tr>
<td>Ancho de las pinnas medias(cm)</td>
<td>60</td>
<td>7.41 +/- 159 (4.1 – 10.7)</td>
<td>-44.67</td>
<td>44.4</td>
</tr>
<tr>
<td>Largo x ancho Pinhas Medias (cm²)</td>
<td>60</td>
<td>792.96 +/- 240.28 (375 – 1473.39 8,5)</td>
<td>-52.65</td>
<td>85.98</td>
</tr>
<tr>
<td>Largo de las pinnas distales(cm)</td>
<td>60</td>
<td>57.4 +/- 18.9 (20 – 107)</td>
<td>-65.17</td>
<td>85.64</td>
</tr>
</tbody>
</table>
Tabla 1. Continuación..

<table>
<thead>
<tr>
<th>Número de frondas en la corona</th>
<th>Altura de la palmera (m)</th>
<th>P +/- DS (min - max)</th>
<th>%I</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>7,18 +/- 1,74 (4,2-10,8)</td>
<td>50,37</td>
<td>41,52</td>
<td>5,55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altura del tallo (m)</th>
<th>P +/- DS (min - max)</th>
<th>%I</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,59 +/- 1,85 (0,2-6,8)</td>
<td>161,87</td>
<td>-92,30</td>
<td>141,21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Número de pinnas por lado</th>
<th>P +/- DS (min - max)</th>
<th>%I</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>106,5 +/- 7,69 (86-120)</td>
<td>12,68</td>
<td>-19,25</td>
<td>53,73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Largo de la fronda mas externa (cm)</th>
<th>P +/- DS (min - max)</th>
<th>%I</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>708,03 +/- 100,75 (490-943)</td>
<td>33,14</td>
<td>-30,82</td>
<td>3,14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Largo del peciolo y vaina (cm)</th>
<th>P +/- DS (min - max)</th>
<th>%I</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>106,03 +/- 31,62 (53-163)</td>
<td>53,73</td>
<td>-50,02</td>
<td>41,66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Largo del Raquis (cm)</th>
<th>P +/- DS (min - max)</th>
<th>%I</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>607,54 +/- 95,38 (400-780)</td>
<td>28,39</td>
<td>-34,16</td>
<td>28,39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Largo de las pinnas proximales (cm)</th>
<th>P +/- DS (min - max)</th>
<th>%I</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>109,85 +/- 22,17 (55-154,83)</td>
<td>42,81</td>
<td>-49,27</td>
<td>42,81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ancho de las pinnas proximales (cm)</th>
<th>P +/- DS (min - max)</th>
<th>%I</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,74 +/- 1,13 (1,0-6,5)</td>
<td>73,34</td>
<td>-73,33</td>
<td>73,34</td>
</tr>
</tbody>
</table>

Tabla 2. Variables morfológicas en palmeras adultas en los pastizales y zonas de boscosas de Pozuzo. P=promedio; DS=Desviación estándar; min= mínimo; max= máximo; %I=Porcentaje de variabilidad inferior; %S=Porcentaje de variabilidad superior.; = p>0,01; **p<0,05; *** = p<0,01 para ANOVA y KWT. %I=Porcentaje de variabilidad inferior; %S=Porcentaje de variabilidad superior.

<table>
<thead>
<tr>
<th>Zona boscosa</th>
<th>Pastizales</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura de la palmera (m)</td>
<td>7,18 +/- 1,74 (4,2-10,8)</td>
<td>50,37</td>
</tr>
<tr>
<td>Altura del tallo (m)</td>
<td>2,59 +/- 1,85 (0,2-6,8)</td>
<td>161,87</td>
</tr>
<tr>
<td>Número de frondas en la corona</td>
<td>6,63 +/- 2,41 (3-16)</td>
<td>141,21</td>
</tr>
<tr>
<td>Número de pinnas por lado</td>
<td>106,5 +/- 7,69 (86-120)</td>
<td>12,68</td>
</tr>
<tr>
<td>Largo de la fronda mas externa (cm)</td>
<td>708,03 +/- 100,75 (490-943)</td>
<td>33,14</td>
</tr>
<tr>
<td>Largo del peciolo y vaina (cm)</td>
<td>106,03 +/- 31,62 (53-163)</td>
<td>53,73</td>
</tr>
<tr>
<td>Largo del Raquis (cm)</td>
<td>607,54 +/- 95,38 (400-780)</td>
<td>28,39</td>
</tr>
<tr>
<td>Largo de las pinnas proximales (cm)</td>
<td>109,85 +/- 22,17 (55-154,83)</td>
<td>42,81</td>
</tr>
<tr>
<td>Ancho de las pinnas proximales (cm)</td>
<td>3,74 +/- 1,13 (1,0-6,5)</td>
<td>73,34</td>
</tr>
<tr>
<td></td>
<td>Zona Boscosa</td>
<td>Pastizales</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>%I</td>
</tr>
<tr>
<td>Largo x ancho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinnas Proximales</td>
<td>427,29 ± 203,50 (55-1006,2)</td>
<td>-87,12</td>
</tr>
<tr>
<td>(cm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largo de las</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnas medias (cm)</td>
<td>105,44 ± 13,29 (75,0–136,5)</td>
<td>-28,87</td>
</tr>
<tr>
<td>Ancho de las</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnas medias(cm)</td>
<td>6,08 ± 0,96 (4,1–8,0)</td>
<td>-32,93</td>
</tr>
<tr>
<td>Largo x ancho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinnas Medias</td>
<td>652,28 ± 166,91 (375 – 1059,24)</td>
<td>-42,48</td>
</tr>
<tr>
<td>(cm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largo de las</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnas distales(cm)</td>
<td>53,84 ± 13,64 (22,0–78,5)</td>
<td>-58,76</td>
</tr>
<tr>
<td>Ancho de las</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnas distales(cm)</td>
<td>3,15 ± 0,79 (1,5–4,6)</td>
<td>-52,44</td>
</tr>
<tr>
<td>Largo x ancho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinnas Distales (cm²)</td>
<td>174,04 ± 78,95 (60–345,4)</td>
<td>-65,52</td>
</tr>
<tr>
<td>Largo de los</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aguijones mayores(cm)</td>
<td>25,84 ± 7,89 (12,33–40,7)</td>
<td>-52,25</td>
</tr>
</tbody>
</table>
Figura 5. Promedio obtenido de las variables morfológicas medidas en los adultos de *Astrocaryum perangustatum* en zonas de Bosque (negro) y pastizales (blanco) de Pozuzo. *p<0.01* para KWT y ANOVA; cm²=cm²
Figura 6. Histogramas de la altura de la palmera adulta (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 7. Histogramas de la altura del tallo en los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 8. Histogramas del Número de frondas por palmera adulta (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 9. Histogramas del número de foliolos por lado en la fronda de los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 10. Histogramas del largo de la fronda más externa en los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 11. Histogramas del Largo del pequiolo y vaina (peciolo + vaina) en los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 12. Histogramas del largo del raquis de los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 13. Histogramas del largo de la pinna proximal de los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 14. Histogramas del ancho de la pinna proximal en los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 15. Histogramas del Largo x ancho de la pinna proximal de los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 16. Histogramas del largo de las pinzas medias de los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 17. Histogramas del ancho de las pinzas medias de los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura18. Histogramas del Largo x ancho de la pinna media de los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 19. Histogramas del largo de las pinnas distales de los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 20. Histogramas del ancho de las pinnas distales en los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 21. Histogramas del Largo x ancho de la pinna distal de los adultos (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
Figura 22. Histogramas del largo del aguijón mayor (eje X) en a) toda la población y b) en la población separada por palmeras de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las palmeras de zonas boscosas (z) y pastizales (p).
En cuanto a las plántulas, lo caracteres mostraron ser muy plásticos en toda la población, con una gran variabilidad (Tabla 3; Figuras 23, 24a, 25a y 26a). Todos los parámetros tuvieron un Porcentaje de variabilidad superior mayor al 100% y un porcentaje de variabilidad inferior mayor al 50%. En comparación con las palmeras adultas la variabilidad en las plántulas de toda la población fue mayor (los parámetros varían en promedio un 120% alrededor de la media). Los datos completos por plántula se encuentran en el Anexo 7.

Fue posible reconocer que las plántulas de las zonas de bosque tenían un mayor largo del limbo (27,08 cm en promedio), peciolo (22,39cm), y un mayor número de hojas (2,95) que las plántulas en las zonas abiertas (17,35cm; 10,12cm y 2,05 para el tamaño de limbo, peciolo y número de hojas promedio respectivamente), Estas diferencias fueron significativas (p<0,01 Tabla 4, Anexos 5 y 6; Figuras 24b, 25b y 26b). El porcentaje de variabilidad fue mayor en las plántulas muestreadas en los pastizales (hasta más del 400% para el largo del peciolo) en comparación con aquellas plántulas muestreadas en las zonas boscosas.

Tabla 3. Caracteres vegetativos de las plántulas de Astrocaryum perangustatum. N=número de datos; P=promedio; DS=Desviación estándar; min= mínimo; max= máximo; %I=Porcentaje de variabilidad inferior; %S=Porcentaje de variabilidad superior.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P +/- DS (min – max)</th>
<th>%I</th>
<th>%S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de hojas</td>
<td>105</td>
<td>2,47 +/- 1,15 (1 - 6)</td>
<td>59,46</td>
<td>143,24</td>
</tr>
<tr>
<td>Largo del limbo (cm)</td>
<td>105</td>
<td>21,8 +/- 8,87 (2 - 62)</td>
<td>-63,3</td>
<td>184,14</td>
</tr>
<tr>
<td>Largo del pecíolo (cm)</td>
<td>105</td>
<td>15,3 +/- 10,80 (2 - 60)</td>
<td>-86,9</td>
<td>293,14</td>
</tr>
</tbody>
</table>
Figura 23. Se muestra el promedio obtenido para cada carácter evaluado en las plántulas de *Astrocaryum perangustatum* muestreadas en Pastizales (blanco) y zonas de Bosque (negro). *= p<0.01.

Tabla 4. Parámetros morfológicos de las plántulas medidas en pastizales y zonas de bosque. Se muestran los promedios seguido por la desviación estándar y los valores máximos y mínimos (entre paréntesis). P=promedio; DS=Desviación estándar; min= mínimo; max= máximo; ***= p<0.01 para ANOVA y KWT. %I=Porcentaje de variabilidad inferior; %S=Porcentaje de variabilidad superior.

<table>
<thead>
<tr>
<th>Zonas Boscosas</th>
<th>Pastizales</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de hojas</td>
<td>Largo del limbo (cm)</td>
<td>Largo del pecíolo (cm)</td>
</tr>
<tr>
<td>P +/- DS (min – max)</td>
<td>P +/- DS (min – max)</td>
<td>P +/- DS (min – max)</td>
</tr>
<tr>
<td>%I</td>
<td>%S</td>
<td>%I</td>
</tr>
<tr>
<td>2,95 +/- 1,39 (1 – 6)</td>
<td>27,08 +/- 8,68 (15 – 62)</td>
<td>22,39 +/- 11,56 (9 – 60)</td>
</tr>
</tbody>
</table>

%I=Porcentaje de variabilidad inferior; %S=Porcentaje de variabilidad superior.
Figura 24. Histogramas del número de hojas por plántula (eje X) en a) toda la población y b) en la población separada por plántulas de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las plántulas de zonas boscosas (z) y pastizales (p).
Figura 25. Histogramas del largo del limbo en las plántulas (eje X) de a) toda la población y b) en la población separada por plántulas de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las plántulas de zonas boscosas (z) y pastizales (p).
Figura 26. Histogramas del largo del peciolo en las plántulas (eje X) en a) toda la población y b) en la población separada por plántulas de zonas boscosas (color rojo) y pastizales (color azul). En b) se muestra una curva normal ajustada para las plántulas de zonas boscosas (z) y pastizales (p).
b) Estructura de poblaciones

Fueron obtenidos los valores promedio de 2 adultos (1-5), 2 juveniles I (0-4) y 3 plántulas (0 – 21) por parcela (400m²) para las zonas de bosque (Tabla 5, Figura 27). Sólo se encontraron 3 individuos juvenil II, únicamente en zonas boscosas (2 en la parcela 14 y 1 en la parcela 22). En las parcelas de los pastizales la densidad de adultos disminuyó (1,24 en promedio), mientras que las plántulas tuvieron valores similares a las zonas boscosas (4,61 en promedio, de 0 hasta 64 plántulas por parcela). No se reportan individuos de estadios juveniles I y II para las zonas de los pastizales. En los pastizales se reportó mayor cantidad de adultos con inflorescencia (1 / parcela) que en las zonas boscosas (0,48 / parcela). La proporción de adultos fue mayor en las zonas boscosas (29%) en comparación con los pastizales (22%). Los juveniles fueron ausentes en los pastizales, mientras que en las zonas boscosas representaron el 17%. No se encontraron diferencias significativas a nivel del estadío de plántulas, cuya proporción fue similar en los pastizales (78%) y zonas boscosas (53%). Los datos completos por parcela se encuentran en el Anexo 8.

Tabla 5. Estructura de poblaciones de *A. perangustatum*. Se muestra el promedio por parcela ± Desviación estándar (min-max); - = p>0.01; *** = p<0,01 para ANOVA y KWT. ~=No se aplicó ANOVA y KW. *Sólo 3 individuos reportados. P=promedio; DS=Desviación estándart; min= mínimo; max= máximo.

<table>
<thead>
<tr>
<th></th>
<th>Total P +/- DS (min – max)</th>
<th>Zonas Boscosas P +/- DS (min – max)</th>
<th>Pastizales P +/- DS (min – max)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adultos (ad)</td>
<td>1,66 +/- 1,13 (1-5)</td>
<td>2,08 +/- 1,38 (1 - 5)</td>
<td>1,24 +/- 0,59 (1 - 4)</td>
<td>***</td>
</tr>
<tr>
<td>Adultos con</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inflorescencia</td>
<td>0,72 +/- 0,61 (0-2)</td>
<td>0,44 +/- 0,58 (0 - 2)</td>
<td>1,0 +/- 0,5 (0-2)</td>
<td>***</td>
</tr>
<tr>
<td>Juveniles1 (ju1)</td>
<td>0,6 +/- 1,29 (0-6)</td>
<td>1,2 +/- 1,63 (0 - 4)</td>
<td>0</td>
<td>***</td>
</tr>
<tr>
<td>Juveniles 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ju2)</td>
<td>0,07 +/- 0,24 (0-1)</td>
<td>0,12 +/- 0,34 (0 - 1)</td>
<td>0</td>
<td>~</td>
</tr>
<tr>
<td>Plántulas (pl)</td>
<td>4,28 +/- 9,96 (0 - 64)</td>
<td>3,8 +/- 6,17 (0 - 21)</td>
<td>4,76 +/- 12,8 (0 - 64)</td>
<td></td>
</tr>
<tr>
<td>PROPORCIÓN (% ad/ju1/ju2/pl)</td>
<td>22 / 9 / 1 / 58</td>
<td>29 / 17 / 1 / 53</td>
<td>22 / 0 / 0 / 78</td>
<td>~</td>
</tr>
</tbody>
</table>
Figura 22. Estructura de poblaciones de *Astrocaryum perangustatum* en zonas boscosas (negro) y pastizales (blanco). Promedio por parcela obtenido en las 25 parcelas. *=p<0,01 para ANOVA y KWT.
DISCUSIÓN

a) **Variabilidad morfológica vegetativa de Astrocaryum perangustatum**

Las palmeras muestreadas en los pastizales se encuentran expuestas a una gran cantidad de radiación solar, producida en este tipo de ambientes por la reducción de nubes y la disminución de la competición por luz con árboles vecinos (Lawton et al. 2001; Collins & Weins, 2000) siendo la radiación un factor variable de acuerdo a las condiciones del día y a la posición dentro del bosque, tal y como se describe para el área de estudio (ver Área de Estudio para mayores detalles de la radiación). Esto hace que la productividad de la palmera aumente, incrementando en el número de frondas en los adultos encontrados en los pastizales, valor que es significativamente mayor que en las zonas boscosas. Si bien las frondas de las palmeras en los pastizales son menos largas que en zonas boscosas, esta diferencia se compensa con el área de las pinnas medias (43% más grandes en los pastizales en promedio) y con la mayor cantidad de frondas. Las condiciones de baja iluminación del sotobosque, resultan en una disminución de la producción de frondas, como se ha podido apreciar en otras especies de *Astrocaryum* (*Astrocaryum sciophillum* y *Astrocaryum paramaca*) las cuales producen aproximadamente 1 fronda al año bajo estas condiciones, Van der Steege 1983; Sist 1989b). Bajo las condiciones del sotobosque las palmeras desarrollan frondas más largas con una vaina, peciolo y raquis más largos como respuesta a la disminución de la cantidad de luz.

Los cambios en el crecimiento de las palmeras, en el cual la intensidad lumínica aumenta el crecimiento de los tallos, han sido reportados anteriormente para palmeras de la Guyana Francesa (de Granville, 1992) caso que se verifica en la población de *Astrocaryum perangustatum* estudiada.
A diferencia de las plantas adultas, las plántulas presentaron un mayor número de hojas en las zonas de bosque, respuesta que puede estar ligada a las necesidades lumínicas de la plántula (Begon, 2006). Sin embargo, hay que considerar que la presencia de ganado en las zonas abiertas reduce el número de hojas en las plántulas que usan este hábitat al alimentarse (H. Aponte, observaciones de campo). Por esta razón son necesarios aún mayores estudios para discernir si esta respuesta de las plántulas es de tipo fisiológico o si se trata de un efecto de la ganadería.

La variabilidad morfológica de *Astrocaryum perangustatum* en Pozuzo es notablemente más alta en comparación a las 13 muestras colectadas en toda el área de distribución (Tabla 6). Dos factores interfieren en la comparación i) la muestra del presente estudio es mucho mayor y ii) el comportamiento del colector tiende a seleccionar las palmeras de fácil acceso y de tamaño pequeño, lo cual permite conocer sólo una parte de la variabilidad morfológica, mientras que en el presente estudio las palmeras fueron muestreadas independientemente de su tamaño. Las descripciones de las especies de palmeras son realizadas generalmente a partir de la colecta de uno o pocos especímenes. Es también necesario medir y conocer la plasticidad morfológica de las especies con mayor detalle dentro y entre las poblaciones, así como conocer como las formas de crecimiento varían con los cambios del entorno en donde viven. Por ejemplo, el espécimen tipo de *Astrocaryum perangustatum* fue colectado en un área abierta, y fue descrita como la especie que tiene las pinnas medias más anchas en el subgénero *Monogynanthus*. Eso sigue siendo cierto, sin embargo, la mayoría de las palmeras muestreadas en el bosque presentan pinnas estrechas. El ancho de las pinnas es entonces una característica del ancho máximo de las pinnas propia de esta especie (entre 9 y 11cm), pero muy variable de acuerdo al ambiente donde se encuentra la palmera. El presente trabajo muestra la gran plasticidad de los caracteres morfológicos vegetativos de *Astrocaryum perangustatum* y los beneficios de un muestreo detallado en las especies de palmera. Mayores estudios son necesarios para lograr entender por completo la biología de esta
especie, por ejemplo, relacionando parámetros abióticos como la radiación y humedad con parámetros morfológicos como los evaluados en el presente trabajo.

Tabla 6. Variabilidad Morfológica de *Astrocaryum perangustatum* encontrada en Pozuzo en comparación con data obtenido de vouchers provenientes de toda el área de distribución de la especie.

| | Vouchers de toda el área de distribución,
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1N=13, 2N=7</td>
</tr>
<tr>
<td>Tamaño del tallo (m)</td>
<td>1,9±1,1 (0,5-4,0)</td>
</tr>
<tr>
<td>Número de frondas</td>
<td>10,0±2,1 (7-12)</td>
</tr>
<tr>
<td>Número de Pinnas por lado</td>
<td>101,9±6,9 (86-112)</td>
</tr>
<tr>
<td>Largo del peciólo (cm)</td>
<td>97,7±38,5 (70-190)</td>
</tr>
<tr>
<td>Largo del raquis (m)</td>
<td>480±77,7 (392-665)</td>
</tr>
</tbody>
</table>

Pinnas medias

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>largo (cm)</td>
<td>121,6±10,8 (108-137)</td>
<td>106±15,6 (68,6-137,6)</td>
</tr>
<tr>
<td>ancho (cm)</td>
<td>7,8±1,8 (5,5-11,0)</td>
<td>7,41±1,59 (4,1-10,7)</td>
</tr>
</tbody>
</table>

b) *Estructura de las poblaciones de Astrocaryum perangustatum*

Las especies de *Astrocaryum* son principalmente gregarias, con muy altas densidades en los bosques de la Amazonía (Kahn, 2008). A pesar de tener gran cantidad de datos disponibles acerca de la densidad de palmeras de diferentes géneros, estos no pueden ser utilizados para una comparación, ya que las forma de crecimiento y el ecosistema al que pertenecen las especies es muy variable. Por ejemplo especies que viven en ambientes inundados periódicamente de la cual si se tienen datos como *Euterpe precatoria* (Miranda et al. 2008; Velarde and
Moraes, 2008). Algunos inventarios realizados por diferentes autores muestran que la densidad es bastante variable entre las especies, y de un lugar a otro, dependiendo de la topografía, capacidad de drenaje y fertilidad del suelo, así como la estructura y dinámica de los bosques (Kahn & Granville, 1992). Si tomamos los datos del presente estudio para estimar un dato de densidad (dato sobreestimado, ya que el método utilizado no permite obtener la densidad real), la población estudiada de *Astrocaryum perangustatum* presenta la densidad más baja al ser comparada con otras cuatro especies del género *Astrocaryum* que desarrollan la misma forma de crecimiento (Tabla 7) (palmeras de frondas largas y tamaño medio, siguiendo a Baslev et al. 2011). Crece, al igual que *Astrocaryum javarense* y *Astrocaryum sciophilum* en ambientes no inundados. Es la única de las cinco especies comparadas que crece en zonas de altas pendientes, mientras que las otras crecen en llanuras o quebradas. Estudios realizados en diferentes formaciones vegetales han mostrado los múltiples problemas que pueden tener las plantas en ambientes con pendientes fuertes, en especial a nivel de drenaje de agua, luminosidad, cambios de las propiedades del suelo y en la estructura del bosque (Carmel & Kadmon, 1999; Scowcroft et al. 2004).

En el caso de las palmeras se conoce del rol de las propiedades del suelo, topografía, actividad humana y composición de especies, como parámetros que afectan la densidad y distribución de las poblaciones de palmeras (Andersen et al. 2009; Correa & Vargas, 2009; Clark et al. 1995). Sin embargo es importante reconocer que es la interacción de estos parámetros es lo que determina la colonización de las palmeras, tal y como ha sido demostrado para *Astrocaryum murumuru* (Vormisto et al. 2004), que puede habitar valles, quebradas o pendientes de acuerdo a las condiciones del suelo y de la cantidad de luz disponible. Estudios posteriores (Aponte, datos no publicados) muestran la gran diferencia y variabilidad de la radiación en zonas de pastizal (entre 4000 Lux y 153900 Lux) y en zonas boscosas (entre 530 Lux 140000 Lux) de Pozuzo. Es importante por lo tanto desarrollar posteriores estudios que incluyan mediciones de estos factores a fin de analizar la correlación de esta especie con los diversos parámetros abióticos del ecosistema.
Tabla 7. Densidad promedio en 0.1 ha en 5 palmeras de tamaño medio y de frondas largas del género *Astrocaryum* que habitan en el sotobosque. Todas las densidades han sido homogeneizadas a 0.1 ha a partir de sus publicaciones originales. 10.4 ha ubicadas en bosques periódicamente inundados en suelos aluviales del Valle del Río Ucayali (Kahn & Mejía, 1990); 20.5 ha ubicadas en bisques de terra firme (Kahn & Mejía, 1991); 30.4 ha en bosques periódicamente inundados en suelos aluviales en el valle del Alto Huallaga (Kahn & Mejía, 1990); 40.5 ha en bosques de terra firme, en suelos de buen drenaje en la Guiana Francesa (Sist, 1989a); 5Densidad de *Astrocaryum perangustatum*, a partir de las parcelas de este estudio. Los estadíos de las especies corresponden a: 6 plántulas y 7 juveniles y adultos. *Astrocaryum perangustatum*, *A. chonta* y *A. javarense* son palmeras solitarias, *A. carnosum* es una especie cespitosa.

<table>
<thead>
<tr>
<th></th>
<th>0-1 m²</th>
<th>1-10 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. chonta¹</td>
<td>18</td>
<td>8,2</td>
</tr>
<tr>
<td>A. javarense²</td>
<td>6</td>
<td>13,2</td>
</tr>
<tr>
<td>A. carnosum³</td>
<td>57,5</td>
<td>88</td>
</tr>
<tr>
<td>A. sciophilum⁴</td>
<td>28,8</td>
<td>20</td>
</tr>
<tr>
<td>A. perangustatum⁵</td>
<td>7,5</td>
<td>5,2</td>
</tr>
</tbody>
</table>

Los resultados del presente trabajo muestran cómo cambia la fenología de la especie según las condiciones ambientales, ya que a mayor exposición a los rayos solares (como en las zonas de pastizales) hubo una mayor cantidad de individuos en floración, inclusive algunos que habían formado frutos. En consecuencia, la gran densidad de las plántulas observadas en los pastizales se puede relacionar a la gran cantidad de palmeras fértiles. Por otro lado, las plántulas son removidas o quemadas periódicamente por los granjeros y el ganado que pastorea la zona. En consecuencia, estas no llegan al estadío juvenil en los pastizales, lo cual detiene el ciclo de renovación natural de estas poblaciones. Los resultados obtenidos en el
presente estudio muestran la vulnerabilidad de los estadíos juveniles, cosa que ocurre en otras especies de palmeras como *Dictyocaryum lamarckianum*, donde estos estadíos son los más afectados en las zonas deforestadas (Palacio et al. 1998) cambiando la estructura de la población.

Las especies introducidas podrían afectar el establecimiento de las plántulas de *Astrocaryum perangustatum*. La abundancia de las plántulas en las zonas deforestadas evaluadas del presente estudio (donde las especies introducidas son más abundantes; Aponte et al. 2010; Aponte et al. 2011) parece no haber sido afectada, ya que la misma no difiere significativamente aquella reportada para las zonas boscosas. Algunas especies introducidas podrían ser facilitadores del establecimiento de las semillas de palmeras (Anthelme et al. 2011). Posteriormente estudios son necesarios para saber si existe algún tipo de competencia o facilitación que permita esclarecer este tipo de relaciones entre las plántulas de *Astrocaryum perangustatum* y las especies introducidas que las rodean.

El presente estudio brinda los primeros datos acerca de la estructura de la población de *Astrocaryum perangustatum*. Los resultados obtenidos podrán ser utilizados para comparar la estructura de poblaciones de diferentes especies de palmeras, así como para poder plantear diferentes planes de conservación a futuro. Día tras día, el área utilizada como pastizal crece, por lo que es importante empezar a monitorear las poblaciones a fin de no perder los datos de densidad y estructura natural de las palmeras y otras especies forestales. Estudios complementarios en otras localidades permitirían conocer mejor aún la estructura de poblaciones de *Astrocaryum perangustatum* a nivel nacional.
CONCLUSIONES

Se han obtenido las siguientes conclusiones:

1. La variabilidad morfológica en la población de *Astrocaryum perangustatum* de Pozuzo fue alta. La mayoría de los caracteres evaluados varía en su tamaño alrededor del 50%. La longitud del tallo, número de frondas, el ancho de las pinas proximales y el largo x ancho de las pinas proximales y distales presentaron una variabilidad mayores al 100%, lo que muestra la alta plasticidad de estos caracteres en la población evaluada. El porcentaje de variabilidad fue mayor en las plántulas de los pastizales (hasta más del 400% para el largo del pecíolo) en comparación con aquellas plántulas en la zona boscosa.

2. Las palmeras adultas de las zonas boscosas presentaron promedios más altos que en la zona de pastizales en el del largo del raquis, pecíolo y vaina, largo de las pinas proximales y largo del aguijón mayor que aquellas palmeras de los pastizales; siendo sus valores 607,54 cm, 106,03 cm, 109,85 y 25,84 cm respectivamente.

3. En los pastizales las palmeras adultas tienen promedios más altos que en las zonas boscosas en el tamaño del tallo, tamaño de las, pinas medias más anchas, mayor largo x ancho de las pinas medias y mayor número de frondas; con valores de 4,19 m, 8,66 cm, 933,63 cm² y 9,96 frondas respectivamente.

4. Las plántulas de las zonas de boscosas tuvieron valores más altos que en los pastizales en el largo del limbo, pecíolo, y un mayor número de hojas con valores de 27,08 cm, 22,39 cm y 2,95 hojas respectivamente.
5. La estructura de la población de *Astrocaryum perangustatum* en Pozuzo fue diferente en los bosques y los pastizales. La proporción de adultos fue mayor en las zonas boscosas (29%) en comparación con los pastizales (22%). Hubo una mayor cantidad de adultos en floración en los pastizales (1 por parcela) que en zonas boscosas (0.44 por parcela). Los juveniles están ausentes en los pastizales, mientras que en las zonas boscosas representaron el 17%.
RECOMENDACIONES

Se recomienda:

1. Evaluar parámetros complementarios como la pendiente, radiación y composición química del hábitat en donde vive la palmera estudio, a fin de lograr entender mejor los cambios en la estructura de la población y las respuestas morfológicas vegetativas en relación a los componentes abióticos propuestos.

2. Implementar métodos complementarios de medición de la densidad poblacional, afín de conocer mejor la densidad real de esta población. Se sugiere utilizar técnicas alternativas (como los métodos de distancias) con parcelas más grandes, con la finalidad de obtener un dato más cercano a la realidad evitando sobreestimar la densidad poblacional.

3. Realizar estudios más detallados de las especies asociadas, afín de poner en evidencia las relaciones de competencia o facilitación entre la especie estudiada y otras especies de plantas vasculares. Este tipo de estudio permitirá conocer mejor si existe un impacto directo de las especies introducidas sobre el establecimiento de las poblaciones de esta palmera.

4. Estudiar de forma complementaria la morfología vegetativa de esta especie en los juveniles, y en poblaciones de localidades diferentes permitirá conocer mejor la plasticidad morfológica de esta especie.

5. Complementar los datos obtenidos en el presente estudio, por extensión de muestreo a otras zonas del área de distribución de la especie Astrocaryum perangustatum.
REFERENCIAS BIBLIOGRÁFICAS

ANEXOS

ANEXO 1. Ubicación de las parcelas.

a) Mapa de Ubicación de las parcelas en el área de estudio. A la derecha un detalle donde se señala el número de cada parcela. ● = Parcelas de zonas Boscosas; ▲ = Parcelas en Pastizales
b) Coordenadas de cada parcelas. N°= Número de la parcela.

<table>
<thead>
<tr>
<th>N°</th>
<th>TIPO</th>
<th>Coordenadas UTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BOSQUE</td>
<td>440301 8888194</td>
</tr>
<tr>
<td>2</td>
<td>BOSQUE</td>
<td>440297 8888116</td>
</tr>
<tr>
<td>3</td>
<td>PASTIZAL</td>
<td>440522 8889222</td>
</tr>
<tr>
<td>4</td>
<td>PASTIZAL</td>
<td>438938 8886234</td>
</tr>
<tr>
<td>5</td>
<td>BOSQUE</td>
<td>438908 8886162</td>
</tr>
<tr>
<td>6</td>
<td>PASTIZAL</td>
<td>439140 8886196</td>
</tr>
<tr>
<td>7</td>
<td>PASTIZAL</td>
<td>439152 8886272</td>
</tr>
<tr>
<td>8</td>
<td>PASTIZAL</td>
<td>439302 8886634</td>
</tr>
<tr>
<td>9</td>
<td>PASTIZAL</td>
<td>438834 8886978</td>
</tr>
<tr>
<td>10</td>
<td>BOSQUE</td>
<td>438915 8886986</td>
</tr>
<tr>
<td>11</td>
<td>PASTIZAL</td>
<td>438838 8886964</td>
</tr>
<tr>
<td>12</td>
<td>PASTIZAL</td>
<td>438780 8886768</td>
</tr>
<tr>
<td>13</td>
<td>PASTIZAL</td>
<td>438944 8887072</td>
</tr>
<tr>
<td>14</td>
<td>BOSQUE</td>
<td>446723 8896002</td>
</tr>
<tr>
<td>15</td>
<td>PASTIZAL</td>
<td>445634 8896408</td>
</tr>
<tr>
<td>16</td>
<td>PASTIZAL</td>
<td>445620 8896194</td>
</tr>
<tr>
<td>17</td>
<td>PASTIZAL</td>
<td>440166 8885670</td>
</tr>
<tr>
<td>18</td>
<td>PASTIZAL</td>
<td>440070 8885479</td>
</tr>
<tr>
<td>19</td>
<td>PASTIZAL</td>
<td>440203 8885641</td>
</tr>
<tr>
<td>20</td>
<td>BOSQUE</td>
<td>440108 8887128</td>
</tr>
<tr>
<td>21</td>
<td>BOSQUE</td>
<td>440098 8887124</td>
</tr>
<tr>
<td>22</td>
<td>BOSQUE</td>
<td>440116 8887186</td>
</tr>
<tr>
<td>23</td>
<td>BOSQUE</td>
<td>440087 8887137</td>
</tr>
<tr>
<td>24</td>
<td>BOSQUE</td>
<td>439831 8887251</td>
</tr>
<tr>
<td>25</td>
<td>PASTIZAL</td>
<td>440989 8888918</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N°</th>
<th>TIPO</th>
<th>Coordenadas UTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>PASTIZAL</td>
<td>440977 8888874</td>
</tr>
<tr>
<td>27</td>
<td>PASTIZAL</td>
<td>440920 8889000</td>
</tr>
<tr>
<td>28</td>
<td>PASTIZAL</td>
<td>440928 8889052</td>
</tr>
<tr>
<td>29</td>
<td>BOSQUE</td>
<td>440919 8889040</td>
</tr>
<tr>
<td>30</td>
<td>BOSQUE</td>
<td>438384 8886494</td>
</tr>
<tr>
<td>31</td>
<td>BOSQUE</td>
<td>438384 8886494</td>
</tr>
<tr>
<td>32</td>
<td>BOSQUE</td>
<td>438384 8886494</td>
</tr>
<tr>
<td>33</td>
<td>BOSQUE</td>
<td>438384 8886494</td>
</tr>
<tr>
<td>34</td>
<td>BOSQUE</td>
<td>438971 8886990</td>
</tr>
<tr>
<td>35</td>
<td>BOSQUE</td>
<td>438280 8886568</td>
</tr>
<tr>
<td>36</td>
<td>BOSQUE</td>
<td>438384 8886494</td>
</tr>
<tr>
<td>37</td>
<td>BOSQUE</td>
<td>438575 8886568</td>
</tr>
<tr>
<td>38</td>
<td>PASTIZAL</td>
<td>438575 8886568</td>
</tr>
<tr>
<td>39</td>
<td>BOSQUE</td>
<td>439359 8886992</td>
</tr>
<tr>
<td>40</td>
<td>PASTIZAL</td>
<td>439358 8886929</td>
</tr>
<tr>
<td>41</td>
<td>BOSQUE</td>
<td>439218 8887882</td>
</tr>
<tr>
<td>42</td>
<td>BOSQUE</td>
<td>439131 8887782</td>
</tr>
<tr>
<td>43</td>
<td>BOSQUE</td>
<td>439405 8887750</td>
</tr>
<tr>
<td>44</td>
<td>PASTIZAL</td>
<td>439449 8885874</td>
</tr>
<tr>
<td>45</td>
<td>PASTIZAL</td>
<td>439449 8885874</td>
</tr>
<tr>
<td>46</td>
<td>PASTIZAL</td>
<td>439445 8885898</td>
</tr>
<tr>
<td>47</td>
<td>PASTIZAL</td>
<td>439525 8885975</td>
</tr>
<tr>
<td>48</td>
<td>PASTIZAL</td>
<td>439525 8885975</td>
</tr>
<tr>
<td>49</td>
<td>BOSQUE</td>
<td>439482 8886058</td>
</tr>
<tr>
<td>50</td>
<td>BOSQUE</td>
<td>439482 8886058</td>
</tr>
</tbody>
</table>
ANEXO 2. Test de Normalidad de Shapiro – Wilk para los datos comparados en el presente estudio. N=Número de datos; p(normal)=probabilidad de seguir una distribución normal. Para la morfología de los adultos: NH=Número de frondas; LTA=Longitud del tallo (m); LTOT=Longitud Total(m); PV=Longitud del Peciolo y vaina (cm); TH= tamaño de la fronda más externa (cm), FPL=Número de Foliolos por lado; RAQ= Tamaño del raquis (cm); LD=Longitud promedio de Pinna Distal (cm); AD=Ancho promedio de Pinna Distal (cm); LXA D=Largo x Ancho Pinna Distal; LM=Longitud promedio de Pinna Media (cm); AM=Ancho promedio de Pinna Media (cm); LXA M= Largo x Ancho Pinna Media; LP=Longitud promedio de Pinna Proximal(cm); AD=Ancho Promedio de Pinna Proximal(cm); LXA P= Largo x Ancho Pinna Proximal; AGM=Longitud del aguijón mayor(cm). Para la morfología de las plántulas: NHOJ=Número de Frondas; LIM=Tamaño del Limbo (cm); PEC=Tamaño del Pecíolo (cm). Para los parámetros poblacionales: AD=Número de Adultos; IN=Número de adultos con inflorecencia; JU1=Número de juveniles 1; PL= Número de plántulas.

A. Morfología de Adultos

<table>
<thead>
<tr>
<th>Zona Boscosa</th>
<th>NH</th>
<th>LTA</th>
<th>LTOT</th>
<th>PV</th>
<th>TH</th>
<th>FPL</th>
<th>RAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>Shapiro-Wilk W</td>
<td>0.9484</td>
<td>0.9798</td>
<td>0.9597</td>
<td>0.9013</td>
<td>0.9174</td>
<td>0.949</td>
<td>0.9153</td>
</tr>
<tr>
<td>p(normal)</td>
<td>0.153</td>
<td>0.8195</td>
<td>0.3038</td>
<td>0.0090</td>
<td>0.0230</td>
<td>0.177</td>
<td>0.0202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pastizal</th>
<th>LD</th>
<th>AD</th>
<th>LXA D</th>
<th>LM</th>
<th>AM</th>
<th>LXA M</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Shapiro-Wilk W</td>
<td>0.9527</td>
<td>0.9446</td>
<td>0.944</td>
<td>0.9669</td>
<td>0.9912</td>
<td>0.971</td>
<td>0.9475</td>
</tr>
<tr>
<td>p(normal)</td>
<td>0.1996</td>
<td>0.1212</td>
<td>0.338</td>
<td>0.4572</td>
<td>0.9958</td>
<td>0.706</td>
<td>0.1448</td>
</tr>
</tbody>
</table>

86
B. Morfología de Plántulas

<table>
<thead>
<tr>
<th>Zona Boscosa</th>
<th>NHOJ</th>
<th>LIM</th>
<th>PEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>Shapiro-Wilk W</td>
<td>0.8391</td>
<td>0.911</td>
<td>0.8445</td>
</tr>
<tr>
<td>p(normal)</td>
<td><0.0001</td>
<td><0.001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Pastizal</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>Shapiro-Wilk W</td>
<td>0.5897</td>
<td>0.9558</td>
<td>0.9115</td>
</tr>
<tr>
<td>p(normal)</td>
<td>0</td>
<td>0.018</td>
<td><0.001</td>
</tr>
</tbody>
</table>

C. Estructura poblacional

<table>
<thead>
<tr>
<th>Zona Boscosa</th>
<th>AD</th>
<th>IN</th>
<th>%IN</th>
<th>JU1</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Shapiro-Wilk W</td>
<td>0.7713</td>
<td>0.6928</td>
<td>0.7067</td>
<td>0.6876</td>
<td>0.66</td>
</tr>
<tr>
<td>p(normal)</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Pastizal</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Shapiro-Wilk W</td>
<td>0.4556</td>
<td>0.6762</td>
<td>0.503</td>
<td>-</td>
<td>0.3929</td>
</tr>
<tr>
<td>p(normal)</td>
<td><0.001</td>
<td>0.0035</td>
<td><0.001</td>
<td>-</td>
<td><0.001</td>
</tr>
</tbody>
</table>
ANEXO 3. Datos Morfológicos de las 60 palmeras estudiadas. N=Número de Palmera; T=Tipo de Ambiente, 1=Bosque, 2=Pastizal; P=Número de Parcela; LTA=Longitud del tallo (m); LTOT=Longitud Total(m); PV=Longitud del Peciolo y vaina (cm); TH= tamaño de la Fronda más externa (cm), FPL=Número de Foliolos por lado; RAQ= Tamaño del raquis (cm); AM=Longitud del aguijón mayor(cm).

<table>
<thead>
<tr>
<th>N</th>
<th>T</th>
<th>P</th>
<th>NH</th>
<th>LTA</th>
<th>LTOT</th>
<th>PV</th>
<th>TH</th>
<th>FPL</th>
<th>RAQ</th>
<th>AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>6.06</td>
<td>8.66</td>
<td>100</td>
<td>440</td>
<td>89.5</td>
<td>340</td>
<td>11.33</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>4.34</td>
<td>8.25</td>
<td>160</td>
<td>672</td>
<td>93.5</td>
<td>512</td>
<td>15.17</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>3.4</td>
<td>7.04</td>
<td>101</td>
<td>476</td>
<td>94</td>
<td>375</td>
<td>17.92</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>2.5</td>
<td>8</td>
<td>110</td>
<td>600</td>
<td>104</td>
<td>490</td>
<td>25.25</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>3.4</td>
<td>5.23</td>
<td>57</td>
<td>567</td>
<td>106</td>
<td>310</td>
<td>5.5</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>11</td>
<td>9</td>
<td>3.34</td>
<td>5.78</td>
<td>54</td>
<td>400</td>
<td>104.5</td>
<td>346</td>
<td>10.33</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>12</td>
<td>13</td>
<td>3.75</td>
<td>9.75</td>
<td>83</td>
<td>600</td>
<td>118</td>
<td>517</td>
<td>12.92</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>12</td>
<td>13</td>
<td>3.75</td>
<td>9.75</td>
<td>83</td>
<td>600</td>
<td>118</td>
<td>517</td>
<td>16.17</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>13</td>
<td>14</td>
<td>4.76</td>
<td>8.29</td>
<td>90</td>
<td>660</td>
<td>107.5</td>
<td>570</td>
<td>19.33</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>15</td>
<td>10</td>
<td>1.5</td>
<td>5.25</td>
<td>52</td>
<td>430</td>
<td>101</td>
<td>378</td>
<td>23.83</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>16</td>
<td>9</td>
<td>2.6</td>
<td>5.77</td>
<td>60</td>
<td>430</td>
<td>109.5</td>
<td>370</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>17</td>
<td>13</td>
<td>4.1</td>
<td>8.1</td>
<td>100</td>
<td>570</td>
<td>103</td>
<td>470</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>18</td>
<td>10</td>
<td>7.2</td>
<td>11</td>
<td>80</td>
<td>600</td>
<td>102.5</td>
<td>520</td>
<td>13.58</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>19</td>
<td>15</td>
<td>5.1</td>
<td>8.5</td>
<td>140</td>
<td>515</td>
<td>97.5</td>
<td>375</td>
<td>16.83</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>21</td>
<td>7</td>
<td>2.8</td>
<td>7.6</td>
<td>75</td>
<td>590</td>
<td>111.5</td>
<td>515</td>
<td>13.18</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>23</td>
<td>6</td>
<td>0.8</td>
<td>4.2</td>
<td>110</td>
<td>720</td>
<td>86</td>
<td>610</td>
<td>14.5</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>23</td>
<td>9</td>
<td>4.3</td>
<td>9.6</td>
<td>100</td>
<td>850</td>
<td>106.5</td>
<td>750</td>
<td>18.67</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>24</td>
<td>8</td>
<td>3.1</td>
<td>8.2</td>
<td>100</td>
<td>680</td>
<td>101</td>
<td>580</td>
<td>23</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>24</td>
<td>5</td>
<td>1</td>
<td>4.8</td>
<td>115</td>
<td>715</td>
<td>90</td>
<td>600</td>
<td>29</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>25</td>
<td>7</td>
<td>6.2</td>
<td>8.5</td>
<td>80</td>
<td>410</td>
<td>96.5</td>
<td>330</td>
<td>21.67</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>26</td>
<td>6</td>
<td>4.6</td>
<td>7.3</td>
<td>80</td>
<td>440</td>
<td>92</td>
<td>360</td>
<td>36.5</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>27</td>
<td>9</td>
<td>6.25</td>
<td>8.6</td>
<td>125</td>
<td>480</td>
<td>91</td>
<td>355</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>28</td>
<td>7</td>
<td>6.2</td>
<td>8.9</td>
<td>60</td>
<td>390</td>
<td>95</td>
<td>330</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>29</td>
<td>8</td>
<td>5.6</td>
<td>9.5</td>
<td>160</td>
<td>740</td>
<td>156</td>
<td>580</td>
<td>37</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>29</td>
<td>4</td>
<td>2.3</td>
<td>6.45</td>
<td>85</td>
<td>720</td>
<td>98.5</td>
<td>635</td>
<td>31.67</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>30</td>
<td>5</td>
<td>1.3</td>
<td>7.5</td>
<td>105</td>
<td>760</td>
<td>112</td>
<td>655</td>
<td>24.33</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>30</td>
<td>6</td>
<td>0.3</td>
<td>6.2</td>
<td>122</td>
<td>770</td>
<td>94.5</td>
<td>648</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>30</td>
<td>8</td>
<td>2.7</td>
<td>8.7</td>
<td>155</td>
<td>870</td>
<td>118.5</td>
<td>715</td>
<td>31.33</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>30</td>
<td>7</td>
<td>2.2</td>
<td>7.4</td>
<td>160</td>
<td>750</td>
<td>105</td>
<td>748.4</td>
<td>17.75</td>
</tr>
<tr>
<td>N</td>
<td>T</td>
<td>P</td>
<td>NH</td>
<td>LTA</td>
<td>LTOT</td>
<td>PV</td>
<td>TH</td>
<td>FPL</td>
<td>RAQ</td>
<td>AM</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>31</td>
<td>4</td>
<td>1.1</td>
<td>6.25</td>
<td>80</td>
<td>750</td>
<td>107</td>
<td>670</td>
<td>33.67</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>32</td>
<td>4</td>
<td>2.5</td>
<td>7.8</td>
<td>70</td>
<td>680</td>
<td>111.5</td>
<td>610</td>
<td>40.67</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>32</td>
<td>3</td>
<td>0.3</td>
<td>4.74</td>
<td>120</td>
<td>750</td>
<td>110</td>
<td>630</td>
<td>16</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>33</td>
<td>5</td>
<td>6.25</td>
<td>10.8</td>
<td>150</td>
<td>570</td>
<td>110</td>
<td>420</td>
<td>20.67</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>33</td>
<td>9</td>
<td>2.2</td>
<td>8.3</td>
<td>163</td>
<td>943</td>
<td>112</td>
<td>780</td>
<td>22.33</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>34</td>
<td>5</td>
<td>2.4</td>
<td>7.66</td>
<td>85</td>
<td>727</td>
<td>115</td>
<td>642</td>
<td>24</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>35</td>
<td>6</td>
<td>2</td>
<td>6.8</td>
<td>83</td>
<td>735</td>
<td>106.5</td>
<td>652</td>
<td>28</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>36</td>
<td>6</td>
<td>1.4</td>
<td>6.55</td>
<td>110</td>
<td>780</td>
<td>110.5</td>
<td>670</td>
<td>31.33</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>37</td>
<td>5</td>
<td>30</td>
<td>6.8</td>
<td>120</td>
<td>734</td>
<td>110.5</td>
<td>614</td>
<td>36</td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>38</td>
<td>11</td>
<td>3.5</td>
<td>8.8</td>
<td>155</td>
<td>905</td>
<td>105</td>
<td>750</td>
<td>14.67</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>39</td>
<td>10</td>
<td>0.28</td>
<td>5.35</td>
<td>140</td>
<td>815</td>
<td>106</td>
<td>675</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>40</td>
<td>6</td>
<td>3.7</td>
<td>6.8</td>
<td>60</td>
<td>380</td>
<td>101</td>
<td>320</td>
<td>11.6</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>41</td>
<td>16</td>
<td>6.8</td>
<td>8.85</td>
<td>100</td>
<td>680</td>
<td>120</td>
<td>580</td>
<td>26</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>42</td>
<td>7</td>
<td>0.2</td>
<td>4.34</td>
<td>140</td>
<td>580</td>
<td>108.5</td>
<td>440</td>
<td>32.25</td>
</tr>
<tr>
<td>44</td>
<td>2</td>
<td>44</td>
<td>5</td>
<td>5.27</td>
<td>7.9</td>
<td>100</td>
<td>580</td>
<td>108.5</td>
<td>480</td>
<td>21.67</td>
</tr>
<tr>
<td>45</td>
<td>2</td>
<td>45</td>
<td>9</td>
<td>3.09</td>
<td>7.8</td>
<td>70</td>
<td>490</td>
<td>104</td>
<td>420</td>
<td>12.5</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>46</td>
<td>13</td>
<td>2.55</td>
<td>5.8</td>
<td>58</td>
<td>530</td>
<td>102.5</td>
<td>472</td>
<td>18.25</td>
</tr>
<tr>
<td>47</td>
<td>2</td>
<td>47</td>
<td>12</td>
<td>4.23</td>
<td>7.8</td>
<td>100</td>
<td>580</td>
<td>108.5</td>
<td>480</td>
<td>14.5</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>48</td>
<td>16</td>
<td>1.4</td>
<td>5.3</td>
<td>50</td>
<td>530</td>
<td>110.5</td>
<td>480</td>
<td>23.75</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>49</td>
<td>7</td>
<td>5.3</td>
<td>8.6</td>
<td>100</td>
<td>500</td>
<td>103.5</td>
<td>400</td>
<td>28.88</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>50</td>
<td>6</td>
<td>5.6</td>
<td>10.08</td>
<td>100</td>
<td>630</td>
<td>110.5</td>
<td>530</td>
<td>29.5</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>51</td>
<td>6</td>
<td>1.3</td>
<td>5.1</td>
<td>70</td>
<td>730</td>
<td>102.5</td>
<td>660</td>
<td>13.33</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>52</td>
<td>7</td>
<td>1.8</td>
<td>4.9</td>
<td>53</td>
<td>490</td>
<td>99</td>
<td>437</td>
<td>12.33</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>53</td>
<td>6</td>
<td>2.57</td>
<td>7.2</td>
<td>70</td>
<td>610</td>
<td>107</td>
<td>540</td>
<td>23</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>54</td>
<td>6</td>
<td>4.6</td>
<td>8</td>
<td>70</td>
<td>720</td>
<td>115</td>
<td>650</td>
<td>23</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>55</td>
<td>8</td>
<td>1.9</td>
<td>7.2</td>
<td>70</td>
<td>660</td>
<td>105</td>
<td>590</td>
<td>25.33</td>
</tr>
<tr>
<td>56</td>
<td>2</td>
<td>56</td>
<td>13</td>
<td>4.1</td>
<td>7.2</td>
<td>60</td>
<td>600</td>
<td>120</td>
<td>540</td>
<td>27.67</td>
</tr>
<tr>
<td>57</td>
<td>2</td>
<td>57</td>
<td>10</td>
<td>4.2</td>
<td>7.4</td>
<td>95</td>
<td>640</td>
<td>99.5</td>
<td>545</td>
<td>17.33</td>
</tr>
<tr>
<td>58</td>
<td>2</td>
<td>58</td>
<td>6</td>
<td>5.4</td>
<td>10</td>
<td>90</td>
<td>630</td>
<td>103.5</td>
<td>540</td>
<td>30.67</td>
</tr>
<tr>
<td>59</td>
<td>2</td>
<td>59</td>
<td>9</td>
<td>5.4</td>
<td>8.3</td>
<td>68</td>
<td>500</td>
<td>98</td>
<td>432</td>
<td>10</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>60</td>
<td>9</td>
<td>4.1</td>
<td>7.5</td>
<td>50</td>
<td>470</td>
<td>106</td>
<td>420</td>
<td>16</td>
</tr>
</tbody>
</table>
ANEXO 4. Datos Morfológicos de las 60 palmeras estudiadas. N=Número de Palmera; T=Tipo de Ambiente, 1=Bosque, 2=Pastizal; P=Número de Parcela; LD=Longitud promedio de Pinna Distal (cm); AD=Ancho promedio de Pinna Distal (cm); LXA D=Largo x ancho Pinna Distal; LM=Longitud promedio de Pinna Media (cm); AM=Ancho promedio de Pinna Media (cm); LXA M= Largo x ancho Pinna Media; LP=Longitud promedio de Pinna Proximal(cm); AD=Ancho Promedio de Pinna Proximal(cm); LXA P= Largo x ancho Pinna Proximal.

<table>
<thead>
<tr>
<th>N</th>
<th>T</th>
<th>P</th>
<th>LD</th>
<th>AD</th>
<th>LXA D</th>
<th>LM</th>
<th>AM</th>
<th>LXA M</th>
<th>LP</th>
<th>AP</th>
<th>LXA P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>68.50</td>
<td>4.00</td>
<td>274.00</td>
<td>81.00</td>
<td>7.70</td>
<td>623.70</td>
<td>65.50</td>
<td>3.75</td>
<td>245.63</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>106.60</td>
<td>5.33</td>
<td>568.50</td>
<td>137.70</td>
<td>10.70</td>
<td>1473.39</td>
<td>141.30</td>
<td>8.50</td>
<td>1201.05</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>98.50</td>
<td>4.75</td>
<td>467.88</td>
<td>104.30</td>
<td>8.57</td>
<td>893.54</td>
<td>95.17</td>
<td>5.50</td>
<td>523.44</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>7</td>
<td>81.00</td>
<td>3.80</td>
<td>307.80</td>
<td>112.20</td>
<td>8.85</td>
<td>992.97</td>
<td>87.50</td>
<td>5.42</td>
<td>473.99</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9</td>
<td>55.67</td>
<td>3.25</td>
<td>180.93</td>
<td>83.17</td>
<td>7.92</td>
<td>658.46</td>
<td>66.33</td>
<td>3.67</td>
<td>243.23</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>11</td>
<td>66.50</td>
<td>3.67</td>
<td>243.86</td>
<td>92.17</td>
<td>8.30</td>
<td>765.01</td>
<td>73.00</td>
<td>4.08</td>
<td>298.06</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>12</td>
<td>104.50</td>
<td>5.00</td>
<td>522.50</td>
<td>115.80</td>
<td>9.08</td>
<td>1051.81</td>
<td>75.00</td>
<td>4.20</td>
<td>315.00</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>12</td>
<td>104.50</td>
<td>5.13</td>
<td>535.56</td>
<td>115.80</td>
<td>9.17</td>
<td>1061.54</td>
<td>84.50</td>
<td>5.28</td>
<td>446.41</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>13</td>
<td>65.33</td>
<td>3.67</td>
<td>239.57</td>
<td>118.30</td>
<td>8.70</td>
<td>1029.21</td>
<td>107.70</td>
<td>6.15</td>
<td>662.36</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>15</td>
<td>61.00</td>
<td>4.00</td>
<td>244.00</td>
<td>97.83</td>
<td>8.42</td>
<td>823.44</td>
<td>63.33</td>
<td>3.67</td>
<td>232.23</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>16</td>
<td>65.00</td>
<td>3.60</td>
<td>234.00</td>
<td>98.67</td>
<td>8.67</td>
<td>855.17</td>
<td>82.83</td>
<td>5.25</td>
<td>434.86</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>17</td>
<td>85.00</td>
<td>4.67</td>
<td>396.70</td>
<td>122.50</td>
<td>9.68</td>
<td>1186.17</td>
<td>95.67</td>
<td>5.93</td>
<td>567.61</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>18</td>
<td>75.00</td>
<td>4.33</td>
<td>324.98</td>
<td>115.20</td>
<td>9.00</td>
<td>1036.80</td>
<td>82.60</td>
<td>4.82</td>
<td>398.13</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>19</td>
<td>75.00</td>
<td>2.47</td>
<td>185.03</td>
<td>113.50</td>
<td>8.70</td>
<td>987.45</td>
<td>82.60</td>
<td>3.85</td>
<td>318.01</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>21</td>
<td>59.67</td>
<td>3.10</td>
<td>184.98</td>
<td>107.20</td>
<td>6.25</td>
<td>670.00</td>
<td>109.20</td>
<td>3.56</td>
<td>388.75</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>23</td>
<td>69.50</td>
<td>3.50</td>
<td>243.25</td>
<td>136.50</td>
<td>7.76</td>
<td>1059.24</td>
<td>132.30</td>
<td>4.92</td>
<td>650.52</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>23</td>
<td>74.00</td>
<td>4.22</td>
<td>312.50</td>
<td>100.80</td>
<td>5.44</td>
<td>548.35</td>
<td>103.00</td>
<td>3.17</td>
<td>326.20</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>24</td>
<td>56.00</td>
<td>3.10</td>
<td>173.60</td>
<td>108.80</td>
<td>6.45</td>
<td>701.76</td>
<td>103.00</td>
<td>3.25</td>
<td>334.75</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>24</td>
<td>78.50</td>
<td>4.40</td>
<td>345.40</td>
<td>106.50</td>
<td>6.22</td>
<td>662.11</td>
<td>104.70</td>
<td>3.43</td>
<td>359.44</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>25</td>
<td>41.50</td>
<td>2.70</td>
<td>112.05</td>
<td>79.50</td>
<td>8.33</td>
<td>662.47</td>
<td>48.00</td>
<td>3.50</td>
<td>168.00</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>26</td>
<td>51.50</td>
<td>2.50</td>
<td>128.75</td>
<td>95.83</td>
<td>7.50</td>
<td>718.73</td>
<td>44.50</td>
<td>4.00</td>
<td>178.00</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>27</td>
<td>41.60</td>
<td>3.50</td>
<td>145.60</td>
<td>68.60</td>
<td>7.96</td>
<td>546.06</td>
<td>69.00</td>
<td>6.50</td>
<td>448.50</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>28</td>
<td>52.30</td>
<td>3.17</td>
<td>165.63</td>
<td>75.50</td>
<td>7.58</td>
<td>572.52</td>
<td>69.50</td>
<td>4.00</td>
<td>278.00</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>29</td>
<td>74.50</td>
<td>4.60</td>
<td>342.70</td>
<td>126.30</td>
<td>6.82</td>
<td>861.37</td>
<td>118.00</td>
<td>4.00</td>
<td>472.00</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>29</td>
<td>46.83</td>
<td>2.90</td>
<td>135.81</td>
<td>110.20</td>
<td>6.80</td>
<td>749.36</td>
<td>111.20</td>
<td>3.60</td>
<td>400.32</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>30</td>
<td>59.33</td>
<td>2.00</td>
<td>118.66</td>
<td>105.00</td>
<td>5.00</td>
<td>525.00</td>
<td>124.70</td>
<td>3.12</td>
<td>389.06</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>30</td>
<td>40.50</td>
<td>3.50</td>
<td>141.75</td>
<td>98.83</td>
<td>6.08</td>
<td>600.89</td>
<td>116.30</td>
<td>3.66</td>
<td>425.66</td>
</tr>
<tr>
<td>N</td>
<td>T</td>
<td>P</td>
<td>LD</td>
<td>AD</td>
<td>LXA D</td>
<td>LM</td>
<td>AM</td>
<td>LXA M</td>
<td>LP</td>
<td>AP</td>
<td>LXA P</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>30</td>
<td>48.50</td>
<td>2.50</td>
<td>121.25</td>
<td>103.00</td>
<td>6.50</td>
<td>669.50</td>
<td>113.70</td>
<td>4.50</td>
<td>511.65</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>30</td>
<td>43.83</td>
<td>2.00</td>
<td>87.66</td>
<td>96.16</td>
<td>5.40</td>
<td>519.26</td>
<td>97.83</td>
<td>3.75</td>
<td>366.86</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>31</td>
<td>40.67</td>
<td>2.58</td>
<td>105.05</td>
<td>101.20</td>
<td>5.80</td>
<td>586.96</td>
<td>154.80</td>
<td>6.50</td>
<td>1006.20</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>32</td>
<td>43.17</td>
<td>2.70</td>
<td>116.56</td>
<td>94.50</td>
<td>4.10</td>
<td>387.45</td>
<td>89.83</td>
<td>2.74</td>
<td>246.13</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>32</td>
<td>43.16</td>
<td>3.20</td>
<td>138.11</td>
<td>94.50</td>
<td>7.00</td>
<td>661.50</td>
<td>89.83</td>
<td>5.00</td>
<td>449.15</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>33</td>
<td>62.50</td>
<td>3.60</td>
<td>225.00</td>
<td>121.70</td>
<td>6.88</td>
<td>836.69</td>
<td>120.00</td>
<td>4.50</td>
<td>540.00</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>33</td>
<td>63.75</td>
<td>3.83</td>
<td>244.35</td>
<td>111.50</td>
<td>6.00</td>
<td>669.00</td>
<td>86.00</td>
<td>2.60</td>
<td>223.60</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>34</td>
<td>58.67</td>
<td>3.25</td>
<td>190.68</td>
<td>98.17</td>
<td>5.25</td>
<td>515.39</td>
<td>93.60</td>
<td>3.00</td>
<td>280.80</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>35</td>
<td>63.67</td>
<td>3.58</td>
<td>227.94</td>
<td>108.00</td>
<td>5.90</td>
<td>637.20</td>
<td>144.80</td>
<td>5.50</td>
<td>796.40</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>36</td>
<td>69.33</td>
<td>4.00</td>
<td>277.32</td>
<td>97.33</td>
<td>5.10</td>
<td>496.38</td>
<td>148.50</td>
<td>5.75</td>
<td>853.88</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>37</td>
<td>55.67</td>
<td>3.08</td>
<td>171.63</td>
<td>96.17</td>
<td>4.30</td>
<td>413.53</td>
<td>118.20</td>
<td>4.30</td>
<td>508.26</td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>38</td>
<td>55.80</td>
<td>2.70</td>
<td>150.66</td>
<td>108.20</td>
<td>8.70</td>
<td>941.34</td>
<td>136.00</td>
<td>7.60</td>
<td>1033.60</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>39</td>
<td>45.33</td>
<td>2.80</td>
<td>126.92</td>
<td>102.80</td>
<td>5.83</td>
<td>599.63</td>
<td>106.20</td>
<td>3.50</td>
<td>371.70</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>40</td>
<td>32.17</td>
<td>2.38</td>
<td>76.66</td>
<td>87.67</td>
<td>10.00</td>
<td>876.70</td>
<td>79.40</td>
<td>3.67</td>
<td>291.16</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>41</td>
<td>53.50</td>
<td>3.05</td>
<td>163.18</td>
<td>128.20</td>
<td>7.50</td>
<td>961.50</td>
<td>117.80</td>
<td>3.80</td>
<td>447.64</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>42</td>
<td>57.17</td>
<td>3.20</td>
<td>182.94</td>
<td>104.50</td>
<td>6.02</td>
<td>628.78</td>
<td>117.20</td>
<td>3.75</td>
<td>439.50</td>
</tr>
<tr>
<td>44</td>
<td>2</td>
<td>44</td>
<td>54.33</td>
<td>3.20</td>
<td>173.86</td>
<td>118.50</td>
<td>9.68</td>
<td>1147.08</td>
<td>101.70</td>
<td>5.70</td>
<td>579.69</td>
</tr>
<tr>
<td>45</td>
<td>2</td>
<td>45</td>
<td>53.17</td>
<td>3.17</td>
<td>168.39</td>
<td>120.50</td>
<td>9.50</td>
<td>1144.75</td>
<td>113.00</td>
<td>6.38</td>
<td>721.28</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>46</td>
<td>52.17</td>
<td>2.80</td>
<td>146.08</td>
<td>108.80</td>
<td>8.80</td>
<td>957.44</td>
<td>82.67</td>
<td>5.15</td>
<td>425.75</td>
</tr>
<tr>
<td>47</td>
<td>2</td>
<td>47</td>
<td>44.00</td>
<td>3.10</td>
<td>136.40</td>
<td>115.80</td>
<td>9.20</td>
<td>1065.36</td>
<td>87.25</td>
<td>5.75</td>
<td>501.69</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>48</td>
<td>51.60</td>
<td>2.98</td>
<td>153.77</td>
<td>121.70</td>
<td>9.33</td>
<td>1135.83</td>
<td>76.25</td>
<td>4.40</td>
<td>335.50</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>49</td>
<td>67.83</td>
<td>3.75</td>
<td>254.36</td>
<td>126.70</td>
<td>6.60</td>
<td>836.22</td>
<td>125.50</td>
<td>4.90</td>
<td>614.95</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>50</td>
<td>47.67</td>
<td>3.17</td>
<td>151.11</td>
<td>115.50</td>
<td>7.40</td>
<td>854.70</td>
<td>111.50</td>
<td>3.70</td>
<td>412.55</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>51</td>
<td>50.00</td>
<td>2.00</td>
<td>100.00</td>
<td>107.30</td>
<td>6.00</td>
<td>643.80</td>
<td>90.00</td>
<td>3.50</td>
<td>315.00</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>52</td>
<td>22.00</td>
<td>3.00</td>
<td>66.00</td>
<td>75.00</td>
<td>5.00</td>
<td>375.00</td>
<td>55.00</td>
<td>1.00</td>
<td>55.00</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>53</td>
<td>32.00</td>
<td>2.00</td>
<td>64.00</td>
<td>107.00</td>
<td>7.00</td>
<td>749.00</td>
<td>100.00</td>
<td>3.00</td>
<td>300.00</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>54</td>
<td>33.00</td>
<td>4.50</td>
<td>148.50</td>
<td>93.00</td>
<td>8.00</td>
<td>744.00</td>
<td>66.00</td>
<td>2.50</td>
<td>165.00</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>55</td>
<td>40.00</td>
<td>1.50</td>
<td>60.00</td>
<td>81.00</td>
<td>5.00</td>
<td>405.00</td>
<td>84.00</td>
<td>2.00</td>
<td>168.00</td>
</tr>
<tr>
<td>56</td>
<td>2</td>
<td>56</td>
<td>20.00</td>
<td>5.00</td>
<td>100.00</td>
<td>92.67</td>
<td>6.67</td>
<td>617.83</td>
<td>84.00</td>
<td>1.50</td>
<td>126.00</td>
</tr>
<tr>
<td>57</td>
<td>2</td>
<td>57</td>
<td>53.00</td>
<td>2.50</td>
<td>132.50</td>
<td>136.00</td>
<td>8.00</td>
<td>1088.00</td>
<td>73.00</td>
<td>2.50</td>
<td>182.50</td>
</tr>
<tr>
<td>58</td>
<td>2</td>
<td>58</td>
<td>66.00</td>
<td>5.00</td>
<td>330.00</td>
<td>132.00</td>
<td>9.50</td>
<td>1254.00</td>
<td>110.00</td>
<td>3.50</td>
<td>385.00</td>
</tr>
<tr>
<td>59</td>
<td>2</td>
<td>59</td>
<td>36.00</td>
<td>2.00</td>
<td>72.00</td>
<td>104.00</td>
<td>9.00</td>
<td>936.00</td>
<td>90.00</td>
<td>5.00</td>
<td>450.00</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>60</td>
<td>28.00</td>
<td>2.00</td>
<td>56.00</td>
<td>113.30</td>
<td>8.00</td>
<td>906.40</td>
<td>60.00</td>
<td>2.00</td>
<td>120.00</td>
</tr>
</tbody>
</table>
ANEXO 5. Análisis no paramétrico de Kruskal-Wallis entre los datos de las zonas boscosas y de los pastizales. H=Estadístico H; Hc=H corregido; p=Valor p. Para la morfología de los adultos: NH=Número de frondas; LTA=Longitud del tallo (m); LTOT=Longitud Total(m); PV=Longitud del Pecíolo y vaina (cm); TH= tamaño de la Fronda más externa (cm), FPL=Número de Foliolos por lado; RAQ= Tamaño del raquis (cm); LD=Longitud promedio de Pinna Distal (cm); AD=Ancho promedio de Pinna Distal (cm); LXA D=Largo x Ancho Pinna Distal; LM=Longitud promedio de Pinna Media (cm); AM=Ancho promedio de Pinna Media (cm); LXA M= Largo x Ancho Pinna Media; LP=Longitud promedio de Pinna Proximal(cm); AD=Ancho Promedio de Pinna Proximal(cm); LXA P= Largo x Ancho Pinna Proximal; AGM=Longitud del aguijón mayor(cm). Para la morfología de las plántulas: NHOJ=Número de Frondas; LIM=Tamaño del Limbo (cm); PEC=Tamaño del Pecíolo (cm). Para los parámetros poblacionales: AD=Número de Adultos; IN=Número de adultos con inflorescencia; JU1=Número de juveniles 1; PL=Número de plántulas.

A. Morfología Adultos

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>Hc</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH</td>
<td>17.94</td>
<td>18.22</td>
<td>2.27E-05</td>
</tr>
<tr>
<td>LTA</td>
<td>10.10</td>
<td>10.11</td>
<td>0.001</td>
</tr>
<tr>
<td>LTOT</td>
<td>2208.00</td>
<td>2.21</td>
<td>0.13</td>
</tr>
<tr>
<td>PV</td>
<td>6.81</td>
<td>6.85</td>
<td>0.009</td>
</tr>
<tr>
<td>TH</td>
<td>26.70</td>
<td>26.73</td>
<td>2.37E-07</td>
</tr>
<tr>
<td>FPL</td>
<td>4.90</td>
<td>4.91</td>
<td>0.0268</td>
</tr>
<tr>
<td>RAQ</td>
<td>26.24</td>
<td>26.26</td>
<td>3.01E-07</td>
</tr>
<tr>
<td>LD</td>
<td>1.67</td>
<td>1.67</td>
<td>0.1958</td>
</tr>
<tr>
<td>AD</td>
<td>1.79</td>
<td>1.79</td>
<td>1.80E-01</td>
</tr>
<tr>
<td>LXA D</td>
<td>1.911</td>
<td>1.911</td>
<td>0.1669</td>
</tr>
<tr>
<td>LM</td>
<td>0.34</td>
<td>0.34</td>
<td>0.559</td>
</tr>
<tr>
<td>AM</td>
<td>40.70</td>
<td>40.72</td>
<td>1.77E-10</td>
</tr>
<tr>
<td>LXA M</td>
<td>19.94</td>
<td>19.94</td>
<td>8.01E-06</td>
</tr>
<tr>
<td>LP</td>
<td>16.77</td>
<td>16.77</td>
<td>4.21E-05</td>
</tr>
</tbody>
</table>
B. Morfología Plántulas.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>Hc</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>7.81</td>
<td>7.81</td>
<td>5.20E-03</td>
</tr>
<tr>
<td>LXA P</td>
<td>0.183</td>
<td>0.183</td>
<td>0.66</td>
</tr>
<tr>
<td>AGM</td>
<td>14.77</td>
<td>14.78</td>
<td>1.21E-03</td>
</tr>
</tbody>
</table>

C. Estructura Poblacional

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>Hc</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHOJ</td>
<td>11.95</td>
<td>13.69</td>
<td>0.0054</td>
</tr>
<tr>
<td>LIM</td>
<td>40.92</td>
<td>41.03</td>
<td>1.58E-10</td>
</tr>
<tr>
<td>PEC</td>
<td>50.29</td>
<td>50.46</td>
<td>1.32E-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>Hc</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>4.47</td>
<td>6.55</td>
<td>0.034</td>
</tr>
<tr>
<td>IN</td>
<td>8.92</td>
<td>11.48</td>
<td>0.0028</td>
</tr>
<tr>
<td>JU1</td>
<td>13.24</td>
<td>20.03</td>
<td>0.00027</td>
</tr>
<tr>
<td>PL</td>
<td>0.25</td>
<td>0.28</td>
<td>0.61</td>
</tr>
</tbody>
</table>
ANEXO 6. Tablas de análisis de comparación de medias (ANOVA) entre los datos de las zonas boscosas y de los pastizales. Para la morfología de los adultos: NH=Número de frondas; LTA=Longitud del tallo (m); LTOT=Longitud Total(m); PV=Longitud del Peciolo y vaina (cm); TH= tamaño de la fronda más externa (cm), FPL=Número de Foliolos por lado; RAQ= Tamaño del raquis (cm); LD=Longitud promedio de Pinna Distal (cm); AD=Ancho promedio de Pinna Distal (cm); LXA D=Largo x Ancho Pinna Distal; LM=Longitud promedio de Pinna Media (cm); AM=Ancho promedio de Pinna Media (cm); LXA M= Largo x Ancho Pinna Media; LP=Longitud promedio de Pinna Proximal(cm); AD=Ancho Promedio de Pinna Proximal; AGM=Longitud del aguijón mayor(cm). Para la morfología de las plántulas: NHOJ=Número de Frondas; LIM=Tamaño del Limbo (cm); PEC= Tamaño del Pecíolo (cm). Para los parámetros poblacionales: AD=Número de Adultos; IN=Número de adultos con inflorescencia; JU1=Número de juveniles 1; PL= Número de plántulas.

A. Morfología de los adultos

<table>
<thead>
<tr>
<th></th>
<th>Suma de Cuadrados</th>
<th>Grados de Libertad</th>
<th>Cuadrado medio</th>
<th>F</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH</td>
<td>Entre grupos</td>
<td>166.667</td>
<td>1</td>
<td>166.667</td>
<td>22.073</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>437.933</td>
<td>58</td>
<td>7.551</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>604.600</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTA</td>
<td>Entre grupos</td>
<td>7.413</td>
<td>1</td>
<td>7.413</td>
<td>.486</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>884.346</td>
<td>58</td>
<td>15.247</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>891.759</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTOT</td>
<td>Entre grupos</td>
<td>5.281</td>
<td>1</td>
<td>5.281</td>
<td>2.037</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>150.326</td>
<td>58</td>
<td>2.592</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>155.607</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>Entre grupos</td>
<td>6201.667</td>
<td>1</td>
<td>6201.667</td>
<td>6.518</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>55185.267</td>
<td>58</td>
<td>951.470</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>61386.933</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td>Entre grupos</td>
<td>474192.600</td>
<td>1</td>
<td>474192.600</td>
<td>40.858</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>673133.800</td>
<td>58</td>
<td>11605.755</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1147326.400</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPL</td>
<td>Entre grupos</td>
<td>180.636</td>
<td>1</td>
<td>180.636</td>
<td>3.023</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>3405.500</td>
<td>57</td>
<td>59.740</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>3586.140</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suma de Cuadrados</td>
<td>Grados de Libertad</td>
<td>Cuadrado medio</td>
<td>F</td>
<td>Valor p</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>RAQ</td>
<td>Entre grupos</td>
<td>397297.163</td>
<td>1</td>
<td>397297.163</td>
<td>42.212</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>945894.795</td>
<td>58</td>
<td>9411.979</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>943191.957</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Entre grupos</td>
<td>1000.335</td>
<td>1</td>
<td>1000.335</td>
<td>2.887</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>20096.272</td>
<td>58</td>
<td>346.487</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>21096.607</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Entre grupos</td>
<td>2.295</td>
<td>1</td>
<td>2.295</td>
<td>2.870</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>46.374</td>
<td>58</td>
<td>.800</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48.669</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LXA D</td>
<td>Entre grupos</td>
<td>5118.1</td>
<td>1</td>
<td>51182.1</td>
<td>3.876</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>765856</td>
<td>58</td>
<td>13204.4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>817038</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM</td>
<td>Entre grupos</td>
<td>9.087</td>
<td>1</td>
<td>9.087</td>
<td>.037</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>14391.253</td>
<td>58</td>
<td>248.125</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14400.340</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Entre grupos</td>
<td>100.920</td>
<td>1</td>
<td>100.920</td>
<td>121.860</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>48.033</td>
<td>58</td>
<td>.828</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>148.953</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LXA M</td>
<td>Entre grupos</td>
<td>1.18x10^6</td>
<td>1</td>
<td>1.87x10^6</td>
<td>31.03</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>2.21x10^6</td>
<td>58</td>
<td>38261</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.40x10^6</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>Entre grupos</td>
<td>8769.844</td>
<td>1</td>
<td>8769.844</td>
<td>18.086</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>28123.261</td>
<td>58</td>
<td>484.884</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>36893.105</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>Entre grupos</td>
<td>13.750</td>
<td>1</td>
<td>13.750</td>
<td>7.536</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>105.827</td>
<td>58</td>
<td>1.825</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>119.578</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LXA P</td>
<td>Entre grupos</td>
<td>914.99</td>
<td>1</td>
<td>914.99</td>
<td>0.0018</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>2.94x10^6</td>
<td>58</td>
<td>50707.8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.94x10^6</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGM</td>
<td>Entre grupos</td>
<td>1074.101</td>
<td>1</td>
<td>1074.101</td>
<td>18.853</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>3190.522</td>
<td>56</td>
<td>56.974</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4264.622</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. Morfología de Plántulas

<table>
<thead>
<tr>
<th></th>
<th>Suma de Cuadrados</th>
<th>Grados de Libertad</th>
<th>Cuadrado medio</th>
<th>F</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHOJ</td>
<td>Entre grupos</td>
<td>21.375</td>
<td>1</td>
<td>21.375</td>
<td>18.856</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>116.759</td>
<td>103</td>
<td>1.134</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>138.133</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIM</td>
<td>Entre grupos</td>
<td>2468.151</td>
<td>1</td>
<td>2468.151</td>
<td>44.486</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>5714.649</td>
<td>103</td>
<td>55.482</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>8182.800</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEC</td>
<td>Entre grupos</td>
<td>3924.914</td>
<td>1</td>
<td>3924.914</td>
<td>41.355</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>9775.620</td>
<td>103</td>
<td>94.909</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>13700.533</td>
<td>104</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Estructura Poblacional

<table>
<thead>
<tr>
<th></th>
<th>Suma de Cuadrados</th>
<th>Grados de Libertad</th>
<th>Cuadrado medio</th>
<th>F</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Entre grupos</td>
<td>8.820</td>
<td>1</td>
<td>8.820</td>
<td>7.782</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>54.400</td>
<td>48</td>
<td>1.133</td>
<td>.008</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>63.220</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>Entre grupos</td>
<td>3.920</td>
<td>1</td>
<td>3.920</td>
<td>13.288</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>14.160</td>
<td>48</td>
<td>.295</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18.080</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JU1</td>
<td>Entre grupos</td>
<td>18.000</td>
<td>1</td>
<td>18.000</td>
<td>13.500</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>64.000</td>
<td>48</td>
<td>1.333</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>82.000</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>Entre grupos</td>
<td>11.520</td>
<td>1</td>
<td>11.520</td>
<td>.114</td>
</tr>
<tr>
<td></td>
<td>Dentro de los grupos</td>
<td>4858.560</td>
<td>48</td>
<td>101.220</td>
<td>.737</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4870.080</td>
<td>49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO 7. Datos Morfológicos de las 105 plántulas estudiadas. N PL= Número de Plántula; PAR= Parcela; ZON=Z Hábitat; NHOJ=Número de Hojas; LIM=Tamaño del Limbo (cm); PEC=Tamaño del Pecíolo (cm); TOT= Longitud Total(cm).

<table>
<thead>
<tr>
<th>N PL</th>
<th>PAR</th>
<th>ZON</th>
<th>NHOJ</th>
<th>LIM</th>
<th>PEC</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>BOSQUE</td>
<td>3</td>
<td>32</td>
<td>60</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>BOSQUE</td>
<td>1</td>
<td>20</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>BOSQUE</td>
<td>2</td>
<td>23</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>BOSQUE</td>
<td>2</td>
<td>18</td>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>BOSQUE</td>
<td>1</td>
<td>19</td>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>BOSQUE</td>
<td>5</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>BOSQUE</td>
<td>3</td>
<td>24</td>
<td>13</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>BOSQUE</td>
<td>2</td>
<td>23</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>BOSQUE</td>
<td>1</td>
<td>19</td>
<td>13</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>BOSQUE</td>
<td>3</td>
<td>39</td>
<td>32</td>
<td>71</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>BOSQUE</td>
<td>3</td>
<td>15</td>
<td>12</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>BOSQUE</td>
<td>2</td>
<td>26</td>
<td>23</td>
<td>49</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>PASTIZAL</td>
<td>1</td>
<td>19</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>PASTIZAL</td>
<td>3</td>
<td>24</td>
<td>11</td>
<td>35</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>PASTIZAL</td>
<td>2</td>
<td>18</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>PASTIZAL</td>
<td>4</td>
<td>20</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>PASTIZAL</td>
<td>2</td>
<td>13</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>7</td>
<td>PASTIZAL</td>
<td>2</td>
<td>14</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>19</td>
<td>7</td>
<td>PASTIZAL</td>
<td>2</td>
<td>17</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>PASTIZAL</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>7</td>
<td>PASTIZAL</td>
<td>3</td>
<td>16</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td>PASTIZAL</td>
<td>3</td>
<td>17</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>PASTIZAL</td>
<td>3</td>
<td>11</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>N PL</td>
<td>PAR</td>
<td>ZON</td>
<td>NHOJ</td>
<td>LIM</td>
<td>PEC</td>
<td>TOT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>PASTIZAL</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>PASTIZAL</td>
<td>2</td>
<td>16</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>PASTIZAL</td>
<td>2</td>
<td>18</td>
<td>17</td>
<td>35</td>
</tr>
<tr>
<td>27</td>
<td>9</td>
<td>PASTIZAL</td>
<td>1</td>
<td>19</td>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>28</td>
<td>9</td>
<td>PASTIZAL</td>
<td>1</td>
<td>12</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>29</td>
<td>9</td>
<td>PASTIZAL</td>
<td>3</td>
<td>26</td>
<td>16</td>
<td>42</td>
</tr>
<tr>
<td>30</td>
<td>9</td>
<td>PASTIZAL</td>
<td>1</td>
<td>22</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>31</td>
<td>9</td>
<td>PASTIZAL</td>
<td>2</td>
<td>26</td>
<td>17</td>
<td>43</td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>PASTIZAL</td>
<td>3</td>
<td>24</td>
<td>18</td>
<td>42</td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>PASTIZAL</td>
<td>2</td>
<td>22</td>
<td>19</td>
<td>41</td>
</tr>
<tr>
<td>34</td>
<td>10</td>
<td>BOSQUE</td>
<td>4</td>
<td>24</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>35</td>
<td>10</td>
<td>BOSQUE</td>
<td>2</td>
<td>21</td>
<td>15</td>
<td>36</td>
</tr>
<tr>
<td>36</td>
<td>10</td>
<td>BOSQUE</td>
<td>3</td>
<td>24</td>
<td>15</td>
<td>39</td>
</tr>
<tr>
<td>37</td>
<td>10</td>
<td>BOSQUE</td>
<td>3</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>38</td>
<td>11</td>
<td>PASTIZAL</td>
<td>2</td>
<td>19</td>
<td>13</td>
<td>32</td>
</tr>
<tr>
<td>39</td>
<td>11</td>
<td>PASTIZAL</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>40</td>
<td>11</td>
<td>PASTIZAL</td>
<td>2</td>
<td>26</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>41</td>
<td>11</td>
<td>PASTIZAL</td>
<td>2</td>
<td>16</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>42</td>
<td>11</td>
<td>PASTIZAL</td>
<td>2</td>
<td>12</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>43</td>
<td>11</td>
<td>PASTIZAL</td>
<td>2</td>
<td>15</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>44</td>
<td>12</td>
<td>PASTIZAL</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>45</td>
<td>12</td>
<td>PASTIZAL</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>46</td>
<td>13</td>
<td>PASTIZAL</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>47</td>
<td>13</td>
<td>PASTIZAL</td>
<td>2</td>
<td>43</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>48</td>
<td>13</td>
<td>PASTIZAL</td>
<td>2</td>
<td>14</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>49</td>
<td>13</td>
<td>PASTIZAL</td>
<td>1</td>
<td>12</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>50</td>
<td>13</td>
<td>PASTIZAL</td>
<td>2</td>
<td>15</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>51</td>
<td>13</td>
<td>PASTIZAL</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>52</td>
<td>14</td>
<td>BOSQUE</td>
<td>3</td>
<td>25</td>
<td>18</td>
<td>43</td>
</tr>
<tr>
<td>N PL</td>
<td>PAR</td>
<td>ZON</td>
<td>NHOJ</td>
<td>LIM</td>
<td>PEC</td>
<td>TOT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>53</td>
<td>14</td>
<td>BOSQUE</td>
<td>2</td>
<td>20</td>
<td>18</td>
<td>38</td>
</tr>
<tr>
<td>54</td>
<td>14</td>
<td>BOSQUE</td>
<td>2</td>
<td>24</td>
<td>21</td>
<td>45</td>
</tr>
<tr>
<td>55</td>
<td>14</td>
<td>BOSQUE</td>
<td>1</td>
<td>20</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>56</td>
<td>14</td>
<td>BOSQUE</td>
<td>5</td>
<td>30</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>57</td>
<td>14</td>
<td>BOSQUE</td>
<td>4</td>
<td>40</td>
<td>27</td>
<td>67</td>
</tr>
<tr>
<td>58</td>
<td>15</td>
<td>PASTIZAL</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>59</td>
<td>18</td>
<td>PASTIZAL</td>
<td>2</td>
<td>18</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>60</td>
<td>18</td>
<td>PASTIZAL</td>
<td>2</td>
<td>18</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>61</td>
<td>18</td>
<td>PASTIZAL</td>
<td>1</td>
<td>17</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>62</td>
<td>18</td>
<td>PASTIZAL</td>
<td>2</td>
<td>19</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>63</td>
<td>18</td>
<td>PASTIZAL</td>
<td>2</td>
<td>23</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>64</td>
<td>18</td>
<td>PASTIZAL</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>65</td>
<td>18</td>
<td>PASTIZAL</td>
<td>1</td>
<td>15</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>66</td>
<td>18</td>
<td>PASTIZAL</td>
<td>2</td>
<td>16</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>67</td>
<td>18</td>
<td>PASTIZAL</td>
<td>1</td>
<td>22</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>68</td>
<td>18</td>
<td>PASTIZAL</td>
<td>2</td>
<td>20</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>69</td>
<td>22</td>
<td>BOSQUE</td>
<td>2</td>
<td>24</td>
<td>21</td>
<td>45</td>
</tr>
<tr>
<td>70</td>
<td>22</td>
<td>BOSQUE</td>
<td>3</td>
<td>27</td>
<td>19</td>
<td>46</td>
</tr>
<tr>
<td>71</td>
<td>23</td>
<td>BOSQUE</td>
<td>1</td>
<td>22</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>72</td>
<td>23</td>
<td>BOSQUE</td>
<td>2</td>
<td>23</td>
<td>17</td>
<td>40</td>
</tr>
<tr>
<td>73</td>
<td>23</td>
<td>BOSQUE</td>
<td>2</td>
<td>22</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>74</td>
<td>23</td>
<td>BOSQUE</td>
<td>2</td>
<td>27</td>
<td>24</td>
<td>51</td>
</tr>
<tr>
<td>75</td>
<td>23</td>
<td>BOSQUE</td>
<td>4</td>
<td>36</td>
<td>22</td>
<td>58</td>
</tr>
<tr>
<td>76</td>
<td>23</td>
<td>BOSQUE</td>
<td>4</td>
<td>29</td>
<td>27</td>
<td>56</td>
</tr>
<tr>
<td>77</td>
<td>25</td>
<td>PASTIZAL</td>
<td>2</td>
<td>18</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>78</td>
<td>27</td>
<td>PASTIZAL</td>
<td>3</td>
<td>24</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>79</td>
<td>27</td>
<td>PASTIZAL</td>
<td>2</td>
<td>20</td>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td>80</td>
<td>27</td>
<td>PASTIZAL</td>
<td>2</td>
<td>19</td>
<td>19</td>
<td>38</td>
</tr>
<tr>
<td>81</td>
<td>28</td>
<td>PASTIZAL</td>
<td>2</td>
<td>21</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>N PL</td>
<td>PAR</td>
<td>ZON</td>
<td>NHOJ</td>
<td>LIM</td>
<td>PEC</td>
<td>TOT</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>82</td>
<td>28</td>
<td>PASTIZAL</td>
<td>2</td>
<td>18</td>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>83</td>
<td>28</td>
<td>PASTIZAL</td>
<td>2</td>
<td>10</td>
<td>5.5</td>
<td>15.5</td>
</tr>
<tr>
<td>84</td>
<td>28</td>
<td>PASTIZAL</td>
<td>2</td>
<td>17</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>85</td>
<td>28</td>
<td>PASTIZAL</td>
<td>2</td>
<td>18</td>
<td>13</td>
<td>31</td>
</tr>
<tr>
<td>86</td>
<td>28</td>
<td>PASTIZAL</td>
<td>4</td>
<td>17</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>87</td>
<td>33</td>
<td>BOSQUE</td>
<td>3</td>
<td>29</td>
<td>22</td>
<td>51</td>
</tr>
<tr>
<td>88</td>
<td>33</td>
<td>BOSQUE</td>
<td>4</td>
<td>34</td>
<td>20</td>
<td>54</td>
</tr>
<tr>
<td>89</td>
<td>33</td>
<td>BOSQUE</td>
<td>3</td>
<td>28</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td>90</td>
<td>35</td>
<td>BOSQUE</td>
<td>1</td>
<td>20</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>91</td>
<td>37</td>
<td>BOSQUE</td>
<td>5</td>
<td>23</td>
<td>19</td>
<td>42</td>
</tr>
<tr>
<td>92</td>
<td>41</td>
<td>BOSQUE</td>
<td>1</td>
<td>21</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>93</td>
<td>41</td>
<td>BOSQUE</td>
<td>4</td>
<td>33</td>
<td>34</td>
<td>67</td>
</tr>
<tr>
<td>94</td>
<td>42</td>
<td>BOSQUE</td>
<td>4</td>
<td>52</td>
<td>60</td>
<td>112</td>
</tr>
<tr>
<td>95</td>
<td>42</td>
<td>BOSQUE</td>
<td>6</td>
<td>35</td>
<td>41</td>
<td>76</td>
</tr>
<tr>
<td>96</td>
<td>42</td>
<td>BOSQUE</td>
<td>4</td>
<td>34</td>
<td>44</td>
<td>78</td>
</tr>
<tr>
<td>97</td>
<td>42</td>
<td>BOSQUE</td>
<td>3</td>
<td>31</td>
<td>30</td>
<td>61</td>
</tr>
<tr>
<td>98</td>
<td>42</td>
<td>BOSQUE</td>
<td>5</td>
<td>24</td>
<td>25</td>
<td>49</td>
</tr>
<tr>
<td>99</td>
<td>42</td>
<td>BOSQUE</td>
<td>6</td>
<td>62</td>
<td>44</td>
<td>106</td>
</tr>
<tr>
<td>100</td>
<td>43</td>
<td>BOSQUE</td>
<td>3</td>
<td>22</td>
<td>24</td>
<td>46</td>
</tr>
<tr>
<td>101</td>
<td>43</td>
<td>BOSQUE</td>
<td>3</td>
<td>28</td>
<td>26</td>
<td>54</td>
</tr>
<tr>
<td>102</td>
<td>43</td>
<td>BOSQUE</td>
<td>2</td>
<td>21</td>
<td>17</td>
<td>38</td>
</tr>
<tr>
<td>103</td>
<td>43</td>
<td>BOSQUE</td>
<td>2</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>104</td>
<td>48</td>
<td>PASTIZAL</td>
<td>3</td>
<td>30</td>
<td>18</td>
<td>48</td>
</tr>
<tr>
<td>105</td>
<td>49</td>
<td>BOSQUE</td>
<td>6</td>
<td>32</td>
<td>29</td>
<td>61</td>
</tr>
</tbody>
</table>
ANEXO 8. Datos obtenidos sobre la estructura de las poblaciones en las 50 parcelas evaluadas. PAR=Número de Parcela; Tipo= Hábitat; AD=Número de Adultos; IN=Número de adultos con inflorecencia; %IN=Porcentaje de adultos con inflorescencia por parcela; JU1=Número de juveniles 1; PL= Número de plántulas. Se muestran sus cordonadas en UTM.

<table>
<thead>
<tr>
<th>PAR</th>
<th>TIPO</th>
<th>AD</th>
<th>IN</th>
<th>%IN</th>
<th>JU1</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BOSQUE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>BOSQUE</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>PASTIZAL</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>BOSQUE</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>PASTIZAL</td>
<td>2</td>
<td>2</td>
<td>100</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>BOSQUE</td>
<td>3</td>
<td>1</td>
<td>33</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>BOSQUE</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>15</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>PASTIZAL</td>
<td>3</td>
<td>1</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>BOSQUE</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>BOSQUE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>BOSQUE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>BOSQUE</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>24</td>
<td>BOSQUE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>PASTIZAL</td>
<td>2</td>
<td>2</td>
<td>100</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>PASTIZAL</td>
<td>3</td>
<td>2</td>
<td>67</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>29</td>
<td>BOSQUE</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PAR</td>
<td>TIPO</td>
<td>AD</td>
<td>IN</td>
<td>%IN</td>
<td>JU1</td>
<td>PL</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>30</td>
<td>BOSQUE</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>BOSQUE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>BOSQUE</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>BOSQUE</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>34</td>
<td>BOSQUE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>BOSQUE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>BOSQUE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>BOSQUE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>PASTIZAL</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>39</td>
<td>BOSQUE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>BOSQUE</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>42</td>
<td>BOSQUE</td>
<td>3</td>
<td>2</td>
<td>67</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>43</td>
<td>BOSQUE</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>44</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>PASTIZAL</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>PASTIZAL</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>BOSQUE</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>BOSQUE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>